Featured Research

from universities, journals, and other organizations

Micro-RNA determines malignancy of lung cancer

Date:
September 9, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
A small RNA molecule determines whether or not lung cancer cells grow invasively and metastasize, according to researchers in Germany. Moreover, they found out that the following is true also for patients with non-small cell lung cancer: The less micro-RNA is produced by tumor cells, the higher the tumor's tendency to metastasize.

A small RNA molecule determines whether or not lung cancer cells grow invasively and metastasize. This has been discovered in the culture dish by scientists of the German Cancer Research Center and the University Medical Center Mannheim. Moreover, they found out that the following is true also for patients with non-small cell lung cancer: The less micro-RNA is produced by tumor cells, the higher the tumor's tendency to metastasize.

Cancer becomes life-threatening when tumor cells start leaving their primary site. They travel through the lymph and blood streams to other tissues where they grow into metastases. This transition to malignancy is associated with characteristic changes in the cancer cells. The activity of several genes is reprogrammed and, thus, the production of proteins anchoring cells to a tissue is reduced. On the other hand, the amount of surface markers which make a cancer cell mobile increases.

Professor Dr. Heike Allgayer heads a Clinical Cooperation Unit of DKFZ and UMM. She is an expert for those cellular processes that lead to metastasis in cancer. In recent years, scientists have discovered that production of many proteins is regulated by what are called micro-RNAs. These RNA molecules, which consist of only about 23 building blocks, attach specifically to messenger RNAs, which contain the blueprints for proteins. In this way, they block the production of the respective protein.

"We believe that micro-RNAs also play an important role in metastasis and that they program cells in a way that leads to malignant growth," medical researcher Heike Allgayer explains. In an international collaboration with researchers in Turin, Italy, Allgayer and her team used various cell lines of non-small cell lung cancer to investigate a particularly suspicious candidate called miR-200c and its role in malignant growth. The research team found out that the less miR-200c is produced by a cell line, the higher its motility and its capacity to invade surrounding tissue. When the researchers experimentally equipped the cancer cells with additional miR-200c, the amount of tissue-anchoring molecules on their surface increased and their invasive capacity became lower. In animal experiments, these cells produced less metastasis.

A dreaded characteristic of non-small cell lung cancer is its resistance to chemotherapy and targeted anticancer drugs. A lack of miR-200c also seems to play a role here. Therapy-resistant lung cancer cell lines that were experimentally equipped with miR-200c could subsequently be killed by the chemotherapy drug cisplatin and responded to cetuximab, a drug that block growth signals.

Allgayer's Team also discovered how the loss of miR-200c is brought about in cancer cells. In the highly aggressive cells, the miR-200c genes are turned off by chemical labeling with methyl groups. Drugs that remove these labels made the production of miR-200c rise again.

Studying the tumor cells of 69 lung cancer patients, the investigators realized that miR-200c not only plays a role in the culture dish. They determined miR-200c levels and compared these with the patients' disease progression data. The lower the miR-200c level in the cancer cells, the more frequently metastasis had already begun. "Our results clearly show a connection between a loss of miR-200c and transition to aggressive, invasive growth, metastasis and chemoresistance," Heike Allgayer summarizes. "Therefore, we will now investigate whether miR-200c production in cancer cells can be used for predicting metastasis and, thus, may serve as a prognosis factor for the progression of a lung cancer. It is also possible that the miR-200c level can help to better predict the effectiveness of particular drugs."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Ceppi, G. Mudduluru, R. Kumarswamy, I. Rapa, G. V. Scagliotti, M. Papotti, H. Allgayer. Loss of miR-200c Expression Induces an Aggressive, Invasive, and Chemoresistant Phenotype in Non-Small Cell Lung Cancer. Molecular Cancer Research, 2010; DOI: 10.1158/1541-7786.MCR-10-0052

Cite This Page:

Helmholtz Association of German Research Centres. "Micro-RNA determines malignancy of lung cancer." ScienceDaily. ScienceDaily, 9 September 2010. <www.sciencedaily.com/releases/2010/09/100908094912.htm>.
Helmholtz Association of German Research Centres. (2010, September 9). Micro-RNA determines malignancy of lung cancer. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/09/100908094912.htm
Helmholtz Association of German Research Centres. "Micro-RNA determines malignancy of lung cancer." ScienceDaily. www.sciencedaily.com/releases/2010/09/100908094912.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins