Featured Research

from universities, journals, and other organizations

Many roads lead to superconductivity

Date:
September 14, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
Researchers have discovered a magnetic signature that occurs universally among all iron-based superconductors, even if the parent compounds from which the superconductors are made possess different chemical properties.

Since their discovery in 2008, a new class of superconductors has precipitated a flood of research the world over. Unlike the previously familiar copper ceramics (cuprates), the basic structure of this new class consists of iron compounds. Because the structure of these compounds differs from the cuprates in many fundamental ways, there is hope of gaining new insights into how the phenomenon of superconductivity arises.

In cooperation with an international research group, researchers from Helmholtz-Zentrum Berlin (HZB) have now discovered a magnetic signature that occurs universally among all iron-based superconductors, even if the parent compounds from which the superconductors are made possess different chemical properties. Their findings are published in Nature Materials (DOI: 10.1038/NMAT280).

Superconductors are generally produced by "doping" so-called parent compounds, which means introducing foreign atoms into them. There is a strong correlation between magnetism and superconductivity here -- both being properties of solids. Conventional superconductors, such as those used in MRI machines in hospitals, do not like magnetism because it disturbs the interactions that lead to superconductivity within the crystal. It is quite a different story for the celebrated high-temperature superconductors, such as cuprates and iron-arsenic compounds. In these cases, the magnetic forces actually help, even promote the onset of superconductivity. These compounds feature magnetic orders which, if they occur in a crystalline structure, are a telltale sign that the material is suitable to be a high-temperature superconductor. With the new iron-based superconductors, it turns out that the symmetry of a magnetic order corresponds exactly to the symmetry in the superconductivity signal.

Dimitri Argyriou (HZB) and his colleagues have produced iron-tellurium-selenium crystals and determined their chemical composition using X-ray and neutron diffraction. They measured the magnetic signals in the crystals by performing neutron scattering experiments on the research reactor BER II of HZB and on the research reactor of the Institute Laue-Langevin in Grenoble.

They discovered that the symmetry of the magnetic order is significantly different from that of other iron-based parent compounds, such as iron-arsenic compounds. Yet, surprisingly, this difference has no impact on the development of superconductivity as a property. It has been detected that the magnetic signal caused by superconductivity -- often referred to as the magnetic resonance -- has the same symmetry as that of the magnetic order. And this is the same in all iron compounds, and apparently follows a universal mechanism that causes superconductivity for all of these materials.

Dimitri Argyriou describes this property as follows: "Going by what we know about the magnetic order of iron compounds, the iron-tellurium-selenium materials ought not to exhibit any superconductivity. But the opposite is the case: Despite the differences in magnetism, the signature of their superconductivity is the same. If we were now to understand how superconductivity arises in light of different starting conditions, then we could perhaps develop materials that are superconductive at even higher temperatures."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. J. Liu, J. Hu, B. Qian, D. Fobes, Z. Q. Mao, W. Bao, M. Reehuis, S. A. J. Kimber, K. Prokeš, S. Matas, D. N. Argyriou, A. Hiess, A. Rotaru, H. Pham, L. Spinu, Y. Qiu, V. Thampy, A. T. Savici, J. A. Rodriguez, C. Broholm. From (π,0) magnetic order to superconductivity with (π,π) magnetic resonance in Fe1.02Te1−xSex. Nature Materials, 2010; 9 (9): 718 DOI: 10.1038/nmat2800

Cite This Page:

Helmholtz Association of German Research Centres. "Many roads lead to superconductivity." ScienceDaily. ScienceDaily, 14 September 2010. <www.sciencedaily.com/releases/2010/09/100910101834.htm>.
Helmholtz Association of German Research Centres. (2010, September 14). Many roads lead to superconductivity. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/09/100910101834.htm
Helmholtz Association of German Research Centres. "Many roads lead to superconductivity." ScienceDaily. www.sciencedaily.com/releases/2010/09/100910101834.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins