Featured Research

from universities, journals, and other organizations

New neurological deficit behind lazy eye identified

Date:
September 10, 2010
Source:
New York University
Summary:
Researchers have identified a new neurological deficit behind amblyopia, or "lazy eye." Their findings shed additional light on how amblyopia results from disrupted links between the brain and normal visual processing.

Researchers at New York University's Center for Neural Science have identified a new neurological deficit behind amblyopia, or "lazy eye." Their findings, which appear in the most recent issue of the Journal of Neuroscience, shed additional light on how amblyopia results from disrupted links between the brain and normal visual processing.

Related Articles


Amblyopia results from developmental problems in the brain. When the parts of the brain concerned with visual processing do not function properly, problems ensue with such visual functions as the perception of movement, depth, and fine detail. It is most prevalent neurological defect of vision in children and adults, affecting 1-3 percent of the population.

Previous research on amblyopia has largely focused on one aspect of visual processing -- that in the primary visual cortex, or V1.

However, while abnormalities in V1 explain some amblyopic visual problems, they fail to account for the full range of losses suffered by those with amblyopia -- including motion perception. With this in mind, the NYU researchers studied a brain area called MT, which has a well-established role in processing information about moving visual objects.

To do this, the researchers studied the visual processing of macaque monkeys, examining those who had normal vision and those whose vision was impaired by amblyopia. The researchers recorded both the monkeys' ability to detect motion and how MT's neurons functioned in this process.

Their results showed striking changes in neuron activity in MT. In monkeys with normal vision, the MT neurons responded through both eyes. However, in those with amblyopia, the MT neurons showed stronger response in one eye -- usually the one not affected by the disorder. Normal visual motion perception relies on neurons that integrate information about the position of moving objects as they cross the visual image. The NYU researchers found that this ability to integrate motion information was defective in neurons driven through the affected eye, which might explain the animal's deficits in motion perception.

"This study shows that amblyopia results from changes in the brain that extend beyond the primary visual cortex," said J. Anthony Movshon, director of the Center for Neural Science and the paper's senior author, adding that many other affected neurological regions remain undiscovered.

The study's other authors were: Yasmine El-Shamayleh, a researcher at NYU's Center for Neural Science; Center for Neural Science Professor Lynne Kiorpes, and Adam Kohn, formerly of NYU and now assistant professor of neuroscience at the Albert Einstein College of Medicine.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. El-Shamayleh, L. Kiorpes, A. Kohn, J. A. Movshon. Visual Motion Processing by Neurons in Area MT of Macaque Monkeys with Experimental Amblyopia. Journal of Neuroscience, 2010; 30 (36): 12198 DOI: 10.1523/JNEUROSCI.3055-10.2010

Cite This Page:

New York University. "New neurological deficit behind lazy eye identified." ScienceDaily. ScienceDaily, 10 September 2010. <www.sciencedaily.com/releases/2010/09/100910101836.htm>.
New York University. (2010, September 10). New neurological deficit behind lazy eye identified. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2010/09/100910101836.htm
New York University. "New neurological deficit behind lazy eye identified." ScienceDaily. www.sciencedaily.com/releases/2010/09/100910101836.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins