Featured Research

from universities, journals, and other organizations

Misfolded neural proteins linked to autism disorders

Date:
September 11, 2010
Source:
University of California - San Diego
Summary:
Scientists have identified misfolding and other molecular anomalies in a key brain protein associated with autism spectrum disorders.

An international team of scientists, led by researchers at the University of California, San Diego, has identified misfolding and other molecular anomalies in a key brain protein associated with autism spectrum disorders.

Related Articles


Palmer Taylor, associate vice chancellor for Health Sciences at UC San Diego and dean of the Skaggs School of Pharmacy and Pharmaceutical Sciences, and colleagues report in the Sept. 10 issue of the Journal of Biological Chemistry that misfolding of a protein called neuroligin-3, due to gene mutations, results in trafficking deficiencies that may lead to abnormal communications between neurons.

Genetic misfolding of neuroligins is thought to prevent normal formation and function of neuronal synapses. The gene mutation has been documented in patients with autism.

"It makes sense that there's a connection," said Taylor. "The neuroligins are involved in maintaining neuronal synapses and their malfunction is likely to affect a neurodevelopmental disease."

Neuroligins are post-synaptic proteins that help glue together neurons at synapses by connecting with pre-synaptic protein partners called neurexins. They are part of a larger family of alpha-beta-hydrolase fold proteins that includes many molecules with diverse catalytic, adhesion and secretory functions.

Using live neurons in culture, the researchers found that different mutations caused different degrees of misfolding of the protein structure, which translated into trafficking deficiencies of varying severity regardless of alpha-beta-hydrolase protein type, yet resulted in distinctly different congenital disorders in the endocrine or nervous systems.

Both neuroligins and the autism mutations are relatively new to science. The former were characterized 15 years ago, the latter discovered just seven years ago. Taylor said identifying and describing the misfolded protein link advances understanding of the complex causes of certain autisms, including the influences of genes versus environment, and perhaps offers a new target for potential drug therapies.

"If the mutation is identified early, it might be possible to rescue affected neurons before abnormal synaptic connections are established" said co-author Davide Comoletti, a research scientist at the Skaggs School of Pharmacy. "But much work remains. We may be able to find a treatment to fix a cell in culture, but to rescue function in vivo may not be feasible with the same strategy."

Co-authors with Taylor and Comoletti are Antonella De Jaco of the Department of Pharmacology at the Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Cell and Developmental Biology at the Daniel Bovet Neurobiology Research Center, Sapienza University of Rome and the Istituto Pasteur-Fondazione Cenci Bolognetti; Michael Z. Lin of the Departments of Pharmacology and Chemistry and Biochemistry at UC San Diego; Noga Dubi, Meghan Miller and Shelley Camp of the Department of Pharmacology at the Skaggs School of Pharmacy and Pharmaceutical Sciences; Mark Ellisman, Department of Neuroscience, UC San Diego; Margaret T. Butko, Departments of Pharmacology and Chemistry and Biochemistry at UC San Diego and Roger Y. Tsien, Departments of Pharmacology and Chemistry and Biochemistry at UC San Diego.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Scott LaFee. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. De Jaco, M. Z. Lin, N. Dubi, D. Comoletti, M. T. Miller, S. Camp, M. Ellisman, M. T. Butko, R. Y. Tsien, P. Taylor. Neuroligin Trafficking Deficiencies Arising from Mutations in the α/β-Hydrolase Fold Protein Family. Journal of Biological Chemistry, 2010; 285 (37): 28674 DOI: 10.1074/jbc.M110.139519

Cite This Page:

University of California - San Diego. "Misfolded neural proteins linked to autism disorders." ScienceDaily. ScienceDaily, 11 September 2010. <www.sciencedaily.com/releases/2010/09/100910142751.htm>.
University of California - San Diego. (2010, September 11). Misfolded neural proteins linked to autism disorders. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2010/09/100910142751.htm
University of California - San Diego. "Misfolded neural proteins linked to autism disorders." ScienceDaily. www.sciencedaily.com/releases/2010/09/100910142751.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins