Featured Research

from universities, journals, and other organizations

New model provides more effective basis for biodiversity conservation

Date:
September 12, 2010
Source:
Hebrew University of Jerusalem
Summary:
A new mathematical model has been developed that provides a more effective basis for biodiversity conservation than existing frameworks.

A mathematical model that provides a more effective basis for biodiversity conservation than existing frameworks has been developed by a researcher at the Hebrew University of Jerusalem.

Related Articles


The complexity of ecological systems, expressed in the large variation in morphology, physiology and behavior of individuals of different species, individuals of the same species, or even the same individual in different environments, makes the understanding of the mechanisms affecting the diversity of ecological communities extremely difficult.

As a consequence, most theories of biodiversity are either limited to a single mechanism, or rely on highly simplified and possibly unrealistic assumptions. Thus, after more than a century of intensive research on species diversity, the world still lacks a solid, theoretical foundation that can effectively guide decision makers.

What enables different species to coexist in nature? Why do some areas, such as the tropics, host huge numbers of species, while others can accommodate only a few? How is climate change expected to affect the diversity of natural ecosystems? What level of habitat destruction can ecological communities suffer, and according to what rules should we design nature reserves?

Taking into account that preserving biological diversity (biodiversity) is crucial for the health of the environment, answering such questions is now recognized as one of the greatest challenges for the 21st century.

In his Ph.D. thesis in the Department of Evolution, Systematics and Ecology at the Hebrew University, Omri Allouche developed, under the supervision of Prof. Ronen Kadmon, a new theory of species diversity that attempts to provide a more effective basis for biodiversity conservation. The heart of the theory is a mathematical model that predicts the number of species expected in an ecological community from properties of the species (e.g., rates of birth, death, and migration) and the environment (e.g., resource availability, habitat loss, frequency of disturbances).

The generality of the model and its flexibility make it a highly effective tool for guiding conservation managers and policy makers. Interestingly, analyses of the model provide novel insights that often differ from common notions of conservationists. For example, in contrast to the intuition that improving habitat quality (e.g. by resource enrichment) should promote biodiversity, Allouche's theory predicts that resource enrichment can actually reduce biodiversity, a result supported by empirical studies.

Another example is the response of ecological communities to habitat loss, which is recognized as the largest threat to biodiversity. Often the response of an ecosystem to mild habitat loss is used to forecast expected responses to large-scale habitat loss. The theory predicts that such forecasts may be misleading, and that ecological communities may show a sudden biodiversity collapse prior to some critical level of habitat loss.

One aspect of particular importance for conservation planning is the prediction of biodiversity responses to global climate change. Most current models of biodiversity responses to climate change make the assumption that dispersal ability of species is unlimited. In his work -- which has earned him a Barenholz Prize at the Hebrew University -- Allouche shows that this assumption significantly reduces the predictive power of such models and can therefore lead to misleading conclusions.

Allouche believes that his contributions can improve the ability of conservation managers and policy makers to assess potential risks to biodiversity, to efficiently design nature reserves, to effectively identify and protect endangered species, and thus, to better conserve the diversity of ecological communities.


Story Source:

The above story is based on materials provided by Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Cite This Page:

Hebrew University of Jerusalem. "New model provides more effective basis for biodiversity conservation." ScienceDaily. ScienceDaily, 12 September 2010. <www.sciencedaily.com/releases/2010/09/100912084116.htm>.
Hebrew University of Jerusalem. (2010, September 12). New model provides more effective basis for biodiversity conservation. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2010/09/100912084116.htm
Hebrew University of Jerusalem. "New model provides more effective basis for biodiversity conservation." ScienceDaily. www.sciencedaily.com/releases/2010/09/100912084116.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins