Featured Research

from universities, journals, and other organizations

New insight into 'accelerated aging' disease

Date:
September 13, 2010
Source:
Cell Press
Summary:
Hutchinson-Gilford Progeria Syndrome (HGPS or progeria) is a rare genetic disease that causes young children to develop symptoms associated with advanced age, such as baldness, wrinkles, osteoporosis and cardiovascular disease. Now, a study uses a mouse model to shed light on progeria, and perhaps also on the normal aging process.

Hutchinson-Gilford Progeria Syndrome (HGPS or progeria) is a rare genetic disease that causes young children to develop symptoms associated with advanced age, such as baldness, wrinkles, osteoporosis and cardiovascular disease. Now, a study published by Cell Press in the September 14th issue of the journal Developmental Cell uses a mouse model to shed light on progeria, and perhaps also on the normal aging process.

Related Articles


Progeria is caused by a mutation in the gene for lamin A that leads to production of "progerin," a truncated form of the lamin A protein that causes the cell nucleus to become misshapen. "How progerin causes progeria and whether it contributes to the normal aging process are areas of intense speculation," says senior study author, Dr. Colin L. Stewart from the Institute of Medical Biology in Singapore.

Dr. Stewart and colleagues had previously developed a mouse model for progeria. In the current study, they showed that the mutation associated with their mouse model produces a progerin-like truncation of lamin A and causes post-natal connective tissue cells to stop producing an extracellular matrix. The lack of this surrounding matrix then causes the cells to stop dividing and to die. However, the researchers did not see the same effects when they studied embryonic cells. This difference between pre-natal and post-natal effects on cell behavior in the mutant mice is significant because children with progeria appear normal at birth but develop signs of accelerated aging soon after, often dying from heart disease while they are still in their teens.

The researchers go on to show that the defects in the extracellular matrix in mouse and human progeria cells are due to abnormalities in a protein network called the Wnt signaling pathway. "Our results provide support for the hypothesis that progeria is a disease of the connective tissue extracellular matrix which manifests as abnormalities in the skeleton, teeth, skin and vasculature," concludes Dr. Stewart. "If these failures are due to defective Wnt signaling and/or cytoskeletal-extracellular matrix function, they suggest possible new routes of intervention that may help in treating this disease."

As there is also evidence for defective lamin production in the vascular system during the normal aging process, the researchers are keen to explore potential implications of their new findings in these and other aspects of both progeria and normal aging.

The researchers include Lidia Hernandez, NCI, Frederick, MD, Medical Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD; Kyle J. Roux, University of Florida College of Medicine, Gainesville, FL; Esther Sook Miin Wong, Institute of Medical Biology, Immunos, Singapore; Leslie C. Mounkes, NCI, Frederick, MD; Rafidah Mutalif, Institute of Medical Biology, Immunos, Singapore; Raju Navasankari, University of Florida College of Medicine, Gainesville, FL, Institute of Medical Biology, Immunos, Singapore; Bina Rai, Institute of Medical Biology, Immunos, Singapore; Simon Cool, Institute of Medical Biology, Immunos, Singapore; Jae-Wook Jeong, Baylor College of Medicine, Houston, TX; Honghe Wang, NCI, Frederick, MD; Hyun-Shik Lee, NCI, Frederick, MD; Serguei Kozlov, NCI, Frederick, MD; Martin Grunert, Institute of Medical Biology, Immunos, Singapore; Thomas Keeble, Institute of Medical Biology, Immunos, Singapore; C. Michael Jones, Institute of Medical Biology, Immunos, Singapore; Margarita D. Meta, University of California, Los Angeles, CA; Stephen G. Young, University of California, Los Angeles, CA; Ira O. Daar, NCI, Frederick, MD; Brian Burke, University of Florida College of Medicine, Gainesville, FL; Alan O. Perantoni, NCI, Frederick, MD; and Colin L. Stewart, NCI, Frederick, MD, Institute of Medical Biology, Immunos, Singapore.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lidia Hernandez, Kyle J. Roux, Esther Sook Miin Wong, Leslie C. Mounkes, Rafidah Mutalif, Raju Navasankari, Bina Rai, Simon Cool, Jae-Wook Jeong, Honghe Wang, Hyun-Shik Lee, Serguei Kozlov, Martin Grunert, Thomas Keeble, C. Michael Jones, Margarita D. Meta, Stephen G. Young, Ira O. Daar, Brian Burke, Alan O. Perantoni, Colin L. Stewart. Functional Coupling between the Extracellular Matrix and Nuclear Lamina by Wnt Signaling in Progeria. Developmental Cell, 2010; 19 (3): 413-425 DOI: 10.1016/j.devcel.2010.08.013

Cite This Page:

Cell Press. "New insight into 'accelerated aging' disease." ScienceDaily. ScienceDaily, 13 September 2010. <www.sciencedaily.com/releases/2010/09/100913121604.htm>.
Cell Press. (2010, September 13). New insight into 'accelerated aging' disease. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/09/100913121604.htm
Cell Press. "New insight into 'accelerated aging' disease." ScienceDaily. www.sciencedaily.com/releases/2010/09/100913121604.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins