Featured Research

from universities, journals, and other organizations

Scientists glimpse 'dance of skeletons' inside neurons: Insight into developmental disorders, including Williams syndrome

Date:
September 15, 2010
Source:
Emory University
Summary:
Scientists have uncovered how a structural component inside neurons performs two coordinated dance moves when the connections between neurons are strengthened. The discovery hints at why people with Williams syndrome, a developmental disorder caused by a deletion of several genes, including one that alters dendritic spine remodeling, have such an unusual blend of cognitive strengths and weaknesses.

Scientists at Emory University School of Medicine have uncovered how a structural component inside neurons performs two coordinated dance moves when the connections between neurons are strengthened.

The results are published online in the journal Nature Neuroscience, and will appear in a future print issue.

In experiments with neurons in culture, the researchers can distinguish two separate steps during long-term potentiation, an enhancement of communication between neurons thought to lie behind learning and memory. Both steps involve the remodeling of the internal "skeletons" of dendritic spines, small protrusions on the surface of a neuron that receive electrical signals from neighboring cells.

The results hint at why people with Williams syndrome, a developmental disorder caused by a deletion of several genes, including one that alters dendritic spine remodeling, have such an unusual blend of cognitive strengths and weaknesses.

The senior author of the paper is James Zheng, PhD, professor of cell biology and neurology at Emory University School of Medicine. The paper's co-first authors are graduate student Jiaping Gu, now a postdoctoral researcher at New York University, postdoc Chi Wai Lee and graduate student Yanjie Fan.

"We've been looking at the remodeling of dendritic spines, which is a fundamental process for reshaping circuits in the brain," Zheng says. "The anatomy of dendritic spines is altered in many diseases, such as fragile X syndrome and schizophrenia, as well as neurodegenerative disorders like Alzheimer's."

During the process of long-term potentiation, dendritic spines both enlarge and display a greater density of neurotransmitter receptors, the receiver dishes that allow neurons to detect the waves of chemicals other neurons are sending them.

Zheng's team studied this process by engineering a type of neurotransmitter receptor to be fluorescent when introduced into neurons. This particular engineered receptor is fluorescent only when it's on the surface of a cell.

"This allows us to directly visualize the addition of these receptors to the spine surface from their internal stores," he says.

The researchers tested how the movement of the receptors was tied to remodeling of the internal skeleton of the cell, by using drugs that either loosen or freeze the actin cytoskeleton, which forms the main structural support inside dendritic spines.

They then investigated the family of proteins called ADF (actin depolymerizing factor)/cofilin, which Zheng describes as acting like a pair of scissors, severing the links of the actin cytoskeleton.

"Our results suggest that there are two activities that need to be coordinated to strengthen dendritic spines: the cell has to cut actin filaments in order to allow receptors in storage to be added to the surface, but then it has to put away the scissors and stabilize and enlarge the spines," Zheng says.

Williams syndrome is a rare developmental disorder caused by a chromosomal deletion spanning 28 genes, several of which may contribute to changes in cognitive development. One of the genes thought to be responsible encodes the enzyme LIM kinase 1. LIM kinase deactivates ADF/cofilin, which means neurons in Williams syndrome may have an altered ability to remodel dendritic spines.

Williams syndrome impairs affected individuals' perceptions of space as well as their ability to make social judgments, but tends to leave other functions relatively intact. Individuals with Williams syndrome are noted to have an affinity for language and music.

"Cytoskeletal remodeling is required for some aspects of long-term potentiation but also needs to be reigned in. If we change LIM kinase or ADF/cofilin and shift the balance of the cytoskeletal remodeling, that could affect some cognitive processes and not others," Zheng proposes. He also believes that the actin cytoskeleton and its regulation by ADF/cofilin, can be a likely target affected by many neurological disorders involving impaired brain functions.

Pharmaceutical companies have been testing inhibitors of LIM kinases as potential drugs for treating glaucoma, cancer and other diseases. Zheng's team's results indicate that manipulating LIM kinase with drugs could end up perturbing or impairing cognitive processes, he says.

"However, it also could mean that there is a window of time where you could possibly enhance learning or memory formation, based on the dynamics of dendritic spine remodeling," he says.

The research was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Emory University. The original article was written by Quinn Eastman. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jiaping Gu, Chi Wai Lee, Yanjie Fan, Daniel Komlos, Xin Tang, Chicheng Sun, Kuai Yu, H Criss Hartzell, Gong Chen, James R Bamburg, James Q Zheng. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nature Neuroscience, 2010; DOI: 10.1038/nn.2634

Cite This Page:

Emory University. "Scientists glimpse 'dance of skeletons' inside neurons: Insight into developmental disorders, including Williams syndrome." ScienceDaily. ScienceDaily, 15 September 2010. <www.sciencedaily.com/releases/2010/09/100913162518.htm>.
Emory University. (2010, September 15). Scientists glimpse 'dance of skeletons' inside neurons: Insight into developmental disorders, including Williams syndrome. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2010/09/100913162518.htm
Emory University. "Scientists glimpse 'dance of skeletons' inside neurons: Insight into developmental disorders, including Williams syndrome." ScienceDaily. www.sciencedaily.com/releases/2010/09/100913162518.htm (accessed August 20, 2014).

Share This




More Mind & Brain News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com
Mental, Neurological Disabilities Up 21% Among Kids

Mental, Neurological Disabilities Up 21% Among Kids

Newsy (Aug. 18, 2014) New numbers show a decade's worth of changes in the number of kids with disabilities. They suggest mental disabilities are up; physical ones are down. Video provided by Newsy
Powered by NewsLook.com
Fake Weed Wreaks Havoc In New Hampshire

Fake Weed Wreaks Havoc In New Hampshire

Newsy (Aug. 17, 2014) New Hampshire's governor declared a state of emergency after more than 40 overdoses of synthetic marijuana in one week throughout the state. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins