Featured Research

from universities, journals, and other organizations

Robotic catheter could improve treatment of heart condition

Date:
September 16, 2010
Source:
North Carolina State University
Summary:
Atrial fibrillation is a heart disorder that affects more than two million Americans, and is considered a key contributor to blood clots and stroke. Now researchers are developing a new computerized catheter that could make the surgical treatment of atrial fibrillation faster, cheaper and more effective -- while significantly decreasing radiation exposure related to the treatment.

A new robotic catheter utilizes “smart materials” to provide significantly better maneuverability, which is expected to reduce operating times.
Credit: Image courtesy of North Carolina State University

Atrial fibrillation is a heart disorder that affects more than two million Americans, and is considered a key contributor to blood clots and stroke. Now researchers from North Carolina State University are developing a new computerized catheter that could make the surgical treatment of atrial fibrillation faster, cheaper and more effective -- while significantly decreasing radiation exposure related to the treatment.

Related Articles


"We are developing a robotic catheter with significantly improved maneuverability and control," says Dr. Gregory Buckner, a professor of mechanical and aerospace engineering at NC State and lead researcher of the team developing the new catheter. "This should reduce the time needed to perform atrial ablation procedures and improve patient outcomes."

Atrial fibrillation occurs when there is random electrical activity in the upper chambers of the heart, the atria. This causes the heart to operate less efficiently, and can lead to lightheadedness and fatigue. It can also lead to blood pooling in the heart, which contributes to blood clots and increased risk of stroke.

Doctors have developed a cardiac ablation technique that mitigates fibrillation by inserting a catheter into the heart and then using extreme heat or cold to create small scars through the walls of the affected atria. These scars block the problematic electrical signals. Throughout this procedure, doctors use X-rays to track the tip of the catheter -- exposing the patient and medical personnel to radiation.

Existing commercial catheters are manually controlled and can only move in two directions. These catheters require doctors to painstakingly manipulate the catheter to control exactly where each individual lesion should be applied.

But the robotic catheter developed by Buckner's team significantly reduce operating times, utilizing "smart materials" to provide significantly better maneuverability. The smart materials act as internal muscles, contracting when an electric current is applied. This allows the catheter to bend left, right, up, down or any combination of those directions. Furthermore, doctors can use a specialized joystick to locate key points on the atrium. A computer program can then trace a curve along those points -- essentially connecting the dots -- creating a solid line of scar tissue that will block the electric signals causing fibrillation.

"If we can reduce the duration of the procedure, it will simultaneously reduce radiation exposure for the patient and medical personnel," Buckner says. "It will also provide cost savings for hospitals and health insurance companies."

The researchers received a Phase II Small Business Innovation Research grant from the National Institutes of Health in August to take their "robotic catheter" prototype from the lab and put it into the hands of doctors. The $1.1 million grant will fund two years of development and surgical testing. Approximately half of these funds will go to NC State, while the remainder will go to Southeast TechInventures, which will help bring the technology to the marketplace.

Other members of Buckner's research team include Dr. Bruce Keene and Dr. Guillaume Chanoit of NC State's College of Veterinary Medicine, and Dr. Salim Idriss, a pediatric electrophysiologist at Duke University Medical Center. Surgical evaluations of their robotic catheter prototypes will begin in 2011.

Other groups have commercialized their own robotic catheter designs, but these require multi-million dollar capital investments and customized catheter laboratories. Buckner's technology could be made available at a fraction of the cost to a larger number of patients due to significant reductions in initial overhead and operational costs, as well as logistical concerns.

NC State's Department of Mechanical and Aerospace Engineering is part of the university's College of Engineering.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Robotic catheter could improve treatment of heart condition." ScienceDaily. ScienceDaily, 16 September 2010. <www.sciencedaily.com/releases/2010/09/100915094232.htm>.
North Carolina State University. (2010, September 16). Robotic catheter could improve treatment of heart condition. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/09/100915094232.htm
North Carolina State University. "Robotic catheter could improve treatment of heart condition." ScienceDaily. www.sciencedaily.com/releases/2010/09/100915094232.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins