Featured Research

from universities, journals, and other organizations

Carbon nanotubes twice as strong as once thought

Date:
September 16, 2010
Source:
American Chemical Society
Summary:
Carbon nanotubes -- those tiny particles poised to revolutionize electronics, medicine, and other areas -- are much bigger in the strength department than anyone ever thought, scientists are reporting. New studies on the strength of these submicroscopic cylinders of carbon indicate that on an ounce-for-ounce basis they are at least 117 times stronger than steel and 30 times stronger than Kevlar, the material used in bulletproof vests and other products. The findings appear in the monthly journal ACS Nano.

Carbon nanotubes -- those tiny particles poised to revolutionize electronics, medicine, and other areas -- are much bigger in the strength department than anyone ever thought, scientists are reporting. New studies on the strength of these submicroscopic cylinders of carbon indicate that on an ounce-for-ounce basis they are at least 117 times stronger than steel and 30 times stronger than Kevlar, the material used in bulletproof vests and other products.

The findings, which could expand commercial and industrial applications of nanotube materials, appear in the monthly journal ACS Nano.

Stephen Cronin and colleagues point out that nanotubes -- barely 1/50,000th the width of a human hair -- have been renowned for exceptional strength, high electrical conductivity, and other properties. Nanotubes can stretch considerably like toffee before breaking. This makes them ideal for a variety of futuristic applications, even, if science fiction ever become reality, as cables in "space elevators" that lift objects from the Earth's surface into orbit.

To resolve uncertainties about the actual strength of nanotubes, the scientists applied immense tension to individual carbon nanotubes of different lengths and widths. They found that nanotubes could be stretched up to 14 percent of their normal length without breaking, or more than twice that of previous reports by others. The finding establishes "a new lower limit for the ultimate strength of carbon nanotubes," the article noted.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chang et al. A New Lower Limit for the Ultimate Breaking Strain of Carbon Nanotubes. ACS Nano, 2010; 100810153230082 DOI: 10.1021/nn100946q

Cite This Page:

American Chemical Society. "Carbon nanotubes twice as strong as once thought." ScienceDaily. ScienceDaily, 16 September 2010. <www.sciencedaily.com/releases/2010/09/100915140334.htm>.
American Chemical Society. (2010, September 16). Carbon nanotubes twice as strong as once thought. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/09/100915140334.htm
American Chemical Society. "Carbon nanotubes twice as strong as once thought." ScienceDaily. www.sciencedaily.com/releases/2010/09/100915140334.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins