Featured Research

from universities, journals, and other organizations

New wave: Spin soliton could be a hit in cell phone communication

Date:
September 16, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have found theoretical evidence of a new way to generate the high-frequency waves used in modern communication devices such as cell phones using exotic "soliton" waves in magnetism. The technique might enable wireless technology that would be more secure and resistant to interference than conventional devices.

The animation this frame was taken from (q.v.) shows the development of the soliton over the course of about 2.7 nanoseconds. Current begins passing through the channel in the center, causing the magnetization to oscillate. These oscillations initially move throughout the layer, but after 1.8 ns the magnetization under the hole inverts to form the soliton (center changes to red) and the oscillations are then localized.
Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have found theoretical evidence of a new way to generate the high-frequency waves used in modern communication devices such as cell phones. Their analysis, if supported by experimental evidence, could contribute to a new generation of wireless technology that would be more secure and resistant to interference than conventional devices.

Related Articles


The team's findings point toward an oscillator that would harness the spin of electrons to generate microwaves -- electromagnetic waves in the frequencies used by mobile devices. Electron spin is a fundamental property, in addition to basic electrical charge, that can be used in electronic circuits. The discovery adds another potential effect to the list of spin's capabilities.

The team's work -- a novel variation on several types of previously proposed experimental oscillators -- predicts that a special type of stationary wave called a "soliton" can be created in a layer of a multilayered magnetic sandwich. Solitons are shape-preserving waves that have been seen in a variety of media. (They first were observed in a boat canal in 1834 and now are used in optical fiber communications.) Creating the soliton requires that one of the sandwich layers be magnetized perpendicular to the plane of the sandwiched layers; then an electric current is forced through a small channel in the sandwich. Once the soliton is established, the magnetic orientation oscillates at more than a billion times a second.

"That's the frequency of microwaves," says NIST physicist Thomas Silva. "You might use this effect to create an oscillator in cell phones that would use less energy than those in use today. And the military could use them in secure communications as well. In theory, you could change the frequency of these devices quite rapidly, making the signals very hard for enemies to intercept or jam."

Silva adds that the oscillator is predicted to be very stable -- its frequency remaining constant even with variations in current -- a distinct practical advantage, as it would reduce unwanted noise in the system. It also appears to create an output signal that would be both steady and strong.

The team's prediction also has value for fundamental research.

"All we've done at this point is the mathematics, but the equations predict these effects will occur in devices that we think we can realize," Silva says, pointing out that the research was inspired by materials that already exist. "We'd like to start looking for experimental evidence that these localized excitations occur, not least because solitons in other materials are hard to generate. If they occur in these devices as our predictions indicate, we might have found a relatively easy way to explore their properties."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Hoefer, T. Silva, Mark Keller. Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Physical Review B, 2010; 82 (5): 054432 DOI: 10.1103/PhysRevB.82.054432

Cite This Page:

National Institute of Standards and Technology (NIST). "New wave: Spin soliton could be a hit in cell phone communication." ScienceDaily. ScienceDaily, 16 September 2010. <www.sciencedaily.com/releases/2010/09/100915162551.htm>.
National Institute of Standards and Technology (NIST). (2010, September 16). New wave: Spin soliton could be a hit in cell phone communication. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/09/100915162551.htm
National Institute of Standards and Technology (NIST). "New wave: Spin soliton could be a hit in cell phone communication." ScienceDaily. www.sciencedaily.com/releases/2010/09/100915162551.htm (accessed October 31, 2014).

Share This



More Computers & Math News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Samsung's Incredible Shrinking Smartphone Profits

Samsung's Incredible Shrinking Smartphone Profits

Reuters - Business Video Online (Oct. 30, 2014) The world's top mobile maker is under severe pressure, delivering a 60 percent drop in Q3 profit as its handset business struggles. Turning it around may not prove easy, says Reuters' Jon Gordon. Video provided by Reuters
Powered by NewsLook.com
Ban On Wearable Cameras In Movie Theaters Surprises No One

Ban On Wearable Cameras In Movie Theaters Surprises No One

Newsy (Oct. 30, 2014) The Motion Picture Association of America and the National Association of Theatre Owners now prohibit wearable cameras such as Google Glass. Video provided by Newsy
Powered by NewsLook.com
Microsoft Launches Fitness Band After Accidental Reveal

Microsoft Launches Fitness Band After Accidental Reveal

Newsy (Oct. 30, 2014) Microsoft accidentally revealed its upcoming fitness band on Wednesday, so the company went ahead and announced it. Video provided by Newsy
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins