Featured Research

from universities, journals, and other organizations

Quantum tornado in the electron beam: Manipulating materials with rotating quantum particles

Date:
September 18, 2010
Source:
Vienna University of Technology
Summary:
Researchers have succeeded in producing what are known as electron vortex beams: rotating electron beams, which make it possible to investigate the magnetic properties of materials. In the future, it may even be possible to manipulate the tiniest components in a targeted manner and set them in rotation.

A flat wave (left) meets the specially shaped grid screen, which converts the electron beam into right-rotating and left-rotating vortex beams (top and bottom), and a middle beam that does not rotate. Similar to in a tornado, the rotation of the electron current is low internally.
Credit: Image courtesy of Vienna University of Technology

A team from the University of Antwerp and TU Vienna (Professor Peter Schattschneider, Institute of Solid State Physics) has succeeded in producing what are known as electron vortex beams: rotating electron beams, which make it possible to investigate the magnetic properties of materials. In the future, it may even be possible to manipulate the tiniest components in a targeted manner and set them in rotation.

The physicists report on this breakthrough in electron physics and its application in the current edition of the journal Nature.

Rotating current: the quantum tornado

Electron beams have been used to analyse materials for some time now -- for example in electron microscopes. For the most part, the beams' rotation does not affect this analysis. In classical physics, an electron current in a vacuum does not have any orbital angular momentum. In quantum mechanics, however, the electrons must be envisaged as a wavelike current -- which can rotate as a whole about its propagation direction, similar to the air flow in a tornado.

Vortex light beams have been used in optics for some time (for example, as optical tweezers for manipulating small particles). Vortex beams made from electrons also offer many new possibilities for managing nanoparticles or measuring angular momentum-related parameters. However, there were previously no really efficient methods of producing them.

"When I was working on an idea of how these beams could be technically produced, it emerged that colleagues from Antwerp had had the same idea," explains Prof Schattschneider. "We therefore decided to pursue the project together: Antwerp had progressed further with the production and Vienna came up with a suggestion for the first application."

The trick with the screen

The production of vortex electron beams was made possible with the help of a grid-like screen cut from platinum foil. When it passes through the platinum screen, the electron beam is diffracted in a similar way to light beams when they pass through a fine grid. The shape of this screen, which measures only a few millionths of a metre, was specifically calculated so that a flat incident electron wave is converted into vortex beams. Right-rotating and left-rotating vortex beams are thus formed behind the grid and in the middle there is a conventional electron beam that does not rotate. If the electrons are used to irradiate a material which for its part also influences the angular momentum of the electrons, and if the electrons are subsequently directed through the made-to-measure platinum screen, then, after this, either the right-rotating or the left-rotating vortex beam will be more intense.

"This enables us to investigate processes affected by angular momentum in nanomaterials much more precisely than was previously possible," explains Prof Schattschneider.

Better than science fiction?

The physicist, who also occasionally writes science fiction, does not find it hard to imagine more exotic applications for the vortex beams: "These electron beams could be used in a targeted way to set tiny wheels in motion on a microscopic motor. Also, the magnetic field of the rotating electrons could be used in the tiniest length scales," Schattschneider speculates. Even applications in data transfer (quantum cryptography) and quantum computers are feasible.

Background: Angular momentum

In quantum mechanics, a distinction is made between the orbital angular momentum of a particle (for example, in the rotation of an electron about the nucleus of an atom) and the internal angular momentum (spin). The spin is often compared to the intrinsic rotation of a particle -- similar to how the earth rotates on its own axis. Because electrons are not spherical but are rather described as punctiform and without intrinsic extension, this comparison is of only limited validity. Unlike the intrinsic rotation of the earth, which can theoretically take on any speed imaginable, the spin of an electron can only ever have one of two values. These are referred to as "Spin up" or "Spin down."

The vortex beams, however, do not have their angular momentum because of the electron spin, but rather due to a spatial rotation of the particle flow about the propagation direction of the electron wave, which means it is therefore an orbital angular momentum. This means that it can have higher values than would be possible quantum mechanically for the electron spin.


Story Source:

The above story is based on materials provided by Vienna University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Verbeeck, H. Tian, P. Schattschneider. Production and application of electron vortex beams. Nature, 2010; 467 (7313): 301 DOI: 10.1038/nature09366

Cite This Page:

Vienna University of Technology. "Quantum tornado in the electron beam: Manipulating materials with rotating quantum particles." ScienceDaily. ScienceDaily, 18 September 2010. <www.sciencedaily.com/releases/2010/09/100916092055.htm>.
Vienna University of Technology. (2010, September 18). Quantum tornado in the electron beam: Manipulating materials with rotating quantum particles. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2010/09/100916092055.htm
Vienna University of Technology. "Quantum tornado in the electron beam: Manipulating materials with rotating quantum particles." ScienceDaily. www.sciencedaily.com/releases/2010/09/100916092055.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins