Featured Research

from universities, journals, and other organizations

Physics breakthrough: Fast-moving neutral atom isolated and captured

Date:
September 27, 2010
Source:
University of Otago
Summary:
In a major physics breakthrough, scientists in New Zealand have developed a technique to consistently isolate and capture a fast-moving neutral atom -- and have also seen and photographed this atom for the first time.

Physicists have developed a technique to entrap a fast-moving neutral atom – and have also seen and photographed this atom for the first time.

In a major physics breakthrough, University of Otago scientists in New Zealand have developed a technique to consistently isolate and capture a fast-moving neutral atom -- and have also seen and photographed this atom for the first time.

The entrapment of the Rubidium 85 atom is the result of a three-year research project funded by the Foundation for Research, Science and Technology, and has already prompted world-wide interest in the new science which will flow from the breakthrough.

A team of four researchers from Otago's Physics Department, led by Dr Mikkel F. Andersen, used laser cooling technology to dramatically slow a group of rubidium 85 atoms. A laser-beam, or "optical tweezers," was then deployed to isolate and hold one atom -- at which point it could be photographed through a microscope.

The researchers then proved they could reliably and consistently produce individual trapped atoms -- a major step towards using the atoms to build next-generation, ultra-fast quantum-logic computers, which harness the potency of atoms to perform complex information-processing tasks.

Dr Andersen says that unlike conventional silicon-based computers which generally perform one task at a time, quantum computers have the potential to perform numerous long and difficult calculations simultaneously; they also have the potential to break secret codes that would usually prove too complex.

"Our method provides a way to deliver those atoms needed to build this type of computer, and it is now possible to get a set of ten atoms held or trapped at the one time.

"You need a set of 30 atoms if you want to build a quantum computer that is capable of performing certain tasks better than existing computers, so this is a big step towards successfully doing that," he says.

"It has been the dream of scientists for the past century to see into the quantum world and develop technology on the smallest scale -- the atomic scale.

"What we have done moves the frontier of what scientists can do and gives us deterministic control of the smallest building blocks in our world," Dr Andersen says.

The results of the landmark study have been announced in the journal Nature Physics.

Dr Andersen says that within three weeks of the first laboratory experiment successfully trapping the atom, new experiments previously not thought possible were underway.

The next step is to try and generate a "state of entanglement" between the atoms, a kind of atomic romance which lasts the distance, he says.

"We need to generate communication between the atoms where they can feel each other, so when they are apart they stay entangled and don't forget each other even from a distance. This is the property that a quantum computer uses to do tasks simultaneously," says Dr Andersen.

One atom is so tiny that 10 billion side by side would make a metre in length. Atoms usually move at the speed of sound, making them difficult to manipulate.

Unlike ions, neutral atoms like the Rubidium 85 atom are notoriously difficult to pin down because they cannot be held by electrical fields. In recent times, only two other types of neutral atom have been seen and photographed by scientists in the world; the Rubidium 87 and the Caesium 133 atom.

Dr Andersen says that for him personally, the breakthrough has been a major milestone.

"I learnt at elementary school that it is impossible to see a single atom through a microscope. Well, my elementary school teacher was wrong," he says.

The other members of Dr Andersen's team are Tzahi Grünzweig, Andrew Hilliard and Matt McGovern.


Story Source:

The above story is based on materials provided by University of Otago. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Grünzweig, A. Hilliard, M. McGovern & M. F. Andersen. Near-deterministic preparation of a single atom in an optical microtrap. Nature Physics, 2010; DOI: 10.1038/nphys1778

Cite This Page:

University of Otago. "Physics breakthrough: Fast-moving neutral atom isolated and captured." ScienceDaily. ScienceDaily, 27 September 2010. <www.sciencedaily.com/releases/2010/09/100927002308.htm>.
University of Otago. (2010, September 27). Physics breakthrough: Fast-moving neutral atom isolated and captured. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2010/09/100927002308.htm
University of Otago. "Physics breakthrough: Fast-moving neutral atom isolated and captured." ScienceDaily. www.sciencedaily.com/releases/2010/09/100927002308.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) — Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins