Featured Research

from universities, journals, and other organizations

Building a smaller, lighter future: Understanding polymer behaviors below one nanometer

Date:
October 18, 2010
Source:
Institute for Integrated Cell-Material Sciences, Kyoto University
Summary:
Knowing how to build nanosized assemblies of polymers (long molecular chains) holds the key to improving a broad range of industrial processes -- from the production of nanofibers, filters, and new materials to the manufacture of low-energy, nanoscale circuits and devices. A recent paper sheds light on key behaviors of polymers in specially engineered confined spaces, opening the door to a level of control that has previously been impossible.

Knowing how to build nanosized assemblies of polymers (long molecular chains) holds the key to improving a broad range of industrial processes -- from the production of nanofibers, filters, and new materials to the manufacture of low-energy, nanoscale circuits and devices. A recent paper in Nature Communications sheds light on key behaviors of polymers in specially engineered confined spaces, opening the door to a level of control that has previously been impossible.

Related Articles


Scientists in Japan at Kyoto University and Nagoya University have succeeded in manufacturing custom-designed sub-nanometer scale channels, or pores, which can be manipulated to trap polymers and allow researchers to observe how these chains respond to temperature changes. Previously this level of observation was not possible, and hence much about polymer behaviors in subnanometer spaces -- in particular thermal transitions -- was unknown.

The technique uses specially designed substances known as porous coordination polymers (PCPs), which are notable for the high-degree to which their pore sizes and other characteristics can be controlled.

"PCPs allow us to design cages in which to trap specific molecules," explains lead scientist Dr. Takashi Uemura of Kyoto University's Graduate School of Engineering. "In this case, polyethylene glycol molecules -- PEGs -- can be accommodated in the cages similarly to the way in which sea eels hide in holes. In open water there is no order to their swimming. But in cylindrical pipes, they prefer to arrange themselves linearly in groups. Polymer chains do this as well, becoming orderly assembled in the PCP channels."

In this case, the PCP channels were precisely tuned to control their size and inner surface characteristics, allowing the research team to directly observe how the polymers behaved. This led to the unexpected finding that the transition temperature -- in this case, melting point -- of confined PEGs decreased as their molecular weight -- length in this instance -- increased.

"This was exactly the opposite of what we had observed in bulk, that is, 'free' PEG," elaborates Dr. Susumu Kitagawa, deputy director of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS). "We believe this to be the result of destabilization of the PEG chains under confinement. Instability increases together with chain length."

Understanding such minute details of the behaviors of nanoconfined polymers gives rise to the possibility of future breakthroughs in nanoscale manufacturing based on assemblies of small numbers of polymer chains, which may in turn be used to fabricate a wide range of new materials.


Story Source:

The above story is based on materials provided by Institute for Integrated Cell-Material Sciences, Kyoto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Takashi Uemura, Nobuhiro Yanai, Satoshi Watanabe, Hideki Tanaka, Ryohei Numaguchi, Minoru T. Miyahara, Yusuke Ohta, Masataka Nagaoka, Susumu Kitagawa. Unveiling thermal transitions of polymers in subnanometre pores. Nature Communications, 2010; 1 (7): 1 DOI: 10.1038/ncomms1091

Cite This Page:

Institute for Integrated Cell-Material Sciences, Kyoto University. "Building a smaller, lighter future: Understanding polymer behaviors below one nanometer." ScienceDaily. ScienceDaily, 18 October 2010. <www.sciencedaily.com/releases/2010/10/101005121714.htm>.
Institute for Integrated Cell-Material Sciences, Kyoto University. (2010, October 18). Building a smaller, lighter future: Understanding polymer behaviors below one nanometer. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/10/101005121714.htm
Institute for Integrated Cell-Material Sciences, Kyoto University. "Building a smaller, lighter future: Understanding polymer behaviors below one nanometer." ScienceDaily. www.sciencedaily.com/releases/2010/10/101005121714.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins