Featured Research

from universities, journals, and other organizations

New class of highly electronegative chemical species discovered

Date:
October 17, 2010
Source:
Virginia Commonwealth University
Summary:
Researchers have discovered a new class of highly electronegative chemical species called hyperhalogens, which use superhalogens as building blocks around a metal atom. The new chemical species may have application in many industries.

An international team of researchers has discovered a new class of highly electronegative chemical species called hyperhalogens, which use superhalogens as building blocks around a metal atom. The new chemical species may have application in many industries.

Researchers from Virginia Commonwealth University, McNeese State University in Lake Charles, La., and the University of Konstanz in Germany report their discovery in the Oct. 6 international chemistry journal Angewandte Chemie International Edition. The journal designated the paper as "very important," recognition granted to only 5 percent of papers it receives.

Chlorine is one of the elements called halogens, a group that includes fluorine, bromine, and iodine. These chemicals are known for their disinfecting and deodorizing power and are also used in some medications and industrial processes. Researchers say that hyperhalogens could be useful in industries where large amounts of halogens are now needed to make cleaning or decontamination products.

Chemists and physicists like Puru Jena, Ph.D., distinguished professor of physics at VCU, know halogens for their reactivity, a characteristic that makes the halogen elements want to bond with another element or a compound by taking one electron. Chlorine, for example, likes being paired with sodium to make table salt. Sodium wants to give away an electron and chlorine wants to take that electron in what Jena calls "a perfect marriage."

"Halogens only need one electron to reach their happy state," said Jena. "They're much more stable as a negative ion than as a neutral atom."

Once the atom takes an electron and becomes a stable, negative ion, the energy it gains is measured by its electron affinity. In chemistry's periodic table, chlorine has the highest electron affinity, measured at 3.6 electron volts, or eV.

One area of Jena's research focuses on finding ways to make new classes of compounds with large electron affinities.

In 1962, English chemist Neil Bartlett found that platinum hexafluoride reacts with xenon to make a noble gas compound. Scientists were surprised because xenon was one of the stable or "noble" gases that rarely react with other elements. A dozen years later, two Soviet scientists, Gennady Gutsev and Alexander Boldyrev, showed that a larger class of molecules with a metal atom at the center surrounded by halogen atoms, similar to platinum hexafluoride, possesses electron affinities larger than that of chlorine. They termed these molecules "superhalogens."

"For example, you could take a sodium atom and a chlorine atom to make a sodium chloride molecule and then attach a second chlorine atom. That compound would then want another electron because of the extra chlorine," Jena said. "All of a sudden, the electron affinity, which is the characteristic we're after, becomes almost a factor of two larger than that of the chlorine atom. It becomes a superhalogen."

Superhalogens have similar, improved properties as halogens, Jena said.

Jena, together with Anil Kandalam, Ph.D., assistant professor at McNeese State University, theorized that they could push the electron affinity of a cluster or a molecule even higher, by using superhalogens as building blocks, instead of halogens, around a metal atom. The theoretical model was tested through experimental studies led by Gerd F. Ganteför, Ph.D., at the University of Konstanz. They termed these species with unusually large electron affinities as "hyperhalogens."

"We used gold as the metal and surrounded it with two boron-dioxide superhalogens and got a hyperhalogen with an even greater electron affinity," Jena said.

The team's synergistic approach involving theory and experiment produced a gold-borate hyperhalogen with an electron affinity of 5.7 eV. The team now is testing a hyperhalogen constructed with four boron-dioxide superhalogens and have reached an electron affinity of 7 eV, with a goal of building a hyperhalogen with 10 eV. These new hyperhalogens may lead to additional discoveries of novel chemicals, Jena said.

The theoretical investigations for the project were conducted by Jena and graduate student Mary Willis at VCU, along with Kandalam. The experimental work was conducted by Ganteför and graduate student Matthias Götz at the University of Konstanz.

The work was supported in part by the federal Defense Threat Reduction Agency and the Department of Energy.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mary Willis, Matthias Götz, Anil K. Kandalam, Gerd F. Ganteför and Puru Jena. Hyperhalogens: Discovery of a New Class of Highly Electronegative Species. Angewandte Chemie International Edition, 2010; DOI: 10.1002/anie.201002212

Cite This Page:

Virginia Commonwealth University. "New class of highly electronegative chemical species discovered." ScienceDaily. ScienceDaily, 17 October 2010. <www.sciencedaily.com/releases/2010/10/101008162702.htm>.
Virginia Commonwealth University. (2010, October 17). New class of highly electronegative chemical species discovered. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/10/101008162702.htm
Virginia Commonwealth University. "New class of highly electronegative chemical species discovered." ScienceDaily. www.sciencedaily.com/releases/2010/10/101008162702.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins