Featured Research

from universities, journals, and other organizations

Physicists pave the way for graphene-based spin computer; First to achieve 'tunneling spin injection'

Date:
October 17, 2010
Source:
University of California -- Riverside
Summary:
Physicists have taken an important step forward in developing a "spin computer" by successfully achieving "tunneling spin injection" into graphene. In their experiments they found a dramatic increase in the efficiency of how spins were being injected by quantum tunneling across an insulator and into graphene. The first to demonstrate tunneling spin injection into graphene, the researchers now have world record values for spin injection efficiency into graphene.

Atomically-thin insulating barriers greatly improve spin injection into graphene. Top image shows flow of electrons (dotted line) when no insulator is used. Flow of electron spin polarization is greatly improved (bottom image) when a magnesium oxide insulator is used as shown.
Credit: Kawakami lab, UC Riverside

Physicists at the University of California, Riverside have taken an important step forward in developing a "spin computer" by successfully achieving "tunneling spin injection" into graphene.

An electron can be polarized to have a directional orientation, called "spin." This spin comes in two forms -- electrons are said to be either "spin up" or "spin down" -- and allows for more data storage than is possible with current electronics.

Spin computers, when developed, would utilize the electron's spin state to store and process vast amounts of information while using less energy, generating less heat and performing much faster than conventional computers in use today.

Tunneling spin injection is a term used to describe conductivity through an insulator. Graphene, brought into the limelight by this year's Nobel Prize in physics, is a single-atom-thick sheet of carbon atoms arrayed in a honeycomb pattern. Extremely strong and flexible, it is a good conductor of electricity and capable of resisting heat.

"Graphene has among the best spin transport characteristics of any material at room temperature," explained Roland Kawakami, an associate professor of physics and astronomy, who led the research team, "which makes it a promising candidate for use in spin computers. But electrical spin injection from a ferromagnetic electrode into graphene is inefficient. An even greater concern is that the observed spin lifetimes are thousands of times shorter than expected theoretically. We would like longer spin lifetimes because the longer the lifetime, the more computational operations you can do."

To address these problems, in the lab Kawakami and colleagues inserted a nanometer-thick insulating layer, known as a "tunnel barrier," in between the ferromagnetic electrode and the graphene layer. They found that the spin injection efficiency increased dramatically.

"We found a 30-fold increase in the efficiency of how spins were being injected by quantum tunneling across the insulator and into graphene," Kawakami said. "Equally interesting is that the insulator was operating like a one-way valve, allowing electron flow in one direction -- from the electrode to graphene -- but not the other. The insulator helps to keep the injected spin inside the graphene, which is what leads to high spin injection efficiency. This counterintuitive result is the first demonstration of tunneling spin injection into graphene. We now have world record values for spin injection efficiency into graphene."

Study results appear in Physical Review Letters.

In their experiments, the Kawakami lab also made an unexpected discovery that explains short spin lifetimes of electrons in graphene that have been reported by other experimental researchers.

Kawakami explained that spin lifetimes are typically investigated through an experiment, known as a Hanle measurement, which uses a ferromagnetic spin detector to monitor the electron spins in graphene as they change direction in an external magnetic field. When his team placed a tunnel barrier in between the ferromagnetic spin detector and the graphene, the spin lifetime from the Hanle measurement jumped up to about 500 picoseconds (compared to typical values of 100 picoseconds) even though the researchers did nothing different to the graphene itself.

"People usually assume that the Hanle measurement accurately measures the spin lifetime, but this result shows that it severely underestimates the spin lifetime when the ferromagnet is touching the graphene," said Wei Han, the first author of the research paper and a graduate student in Kawakami's lab. "This is good news because it means the true spin lifetime in graphene must be longer than reported previously -- potentially a lot longer."

Kawakami explained that, theoretically, graphene has the potential for extremely long spin lifetimes.

"This lifetime could be microseconds long," he said. "A long lifetime is a special property of graphene, making it a very attractive material for a spin computer."

Growing insulating barriers on graphene is neither a simple nor easy process. The insulator tends to form clumps on the graphene sheet, due in part to graphene's reluctance to form strong bonds with materials. To circumvent the problem of clumping, in their experiments the Kawakami team layered the graphene sheet with titanium (about half an atom thick) using a method called molecular beam epitaxy. The titanium layer, the researchers found, prevented the insulator from clumping on graphene or sliding off it.

Next in the research, the Kawakami lab plans to demonstrate a working spin logic device

Han, a recipient of the Leo Falicov Award from the American Vacuum Society, and Kawakami were joined in the study by Kyle Pi, Kathy McCreary, Yan Li, Jared Wong, and Adrian Swartz of UCR. Grants to Kawakami from the National Science Foundation and the Office of Naval Research supported the study.


Story Source:

The above story is based on materials provided by University of California -- Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Han, K. Pi, K. McCreary, Yan Li, Jared Wong, A. Swartz, R. Kawakami. Tunneling Spin Injection into Single Layer Graphene. Physical Review Letters, 2010; 105 (16) DOI: 10.1103/PhysRevLett.105.167202

Cite This Page:

University of California -- Riverside. "Physicists pave the way for graphene-based spin computer; First to achieve 'tunneling spin injection'." ScienceDaily. ScienceDaily, 17 October 2010. <www.sciencedaily.com/releases/2010/10/101014111336.htm>.
University of California -- Riverside. (2010, October 17). Physicists pave the way for graphene-based spin computer; First to achieve 'tunneling spin injection'. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/10/101014111336.htm
University of California -- Riverside. "Physicists pave the way for graphene-based spin computer; First to achieve 'tunneling spin injection'." ScienceDaily. www.sciencedaily.com/releases/2010/10/101014111336.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins