Featured Research

from universities, journals, and other organizations

New nano techniques integrate electron gas-producing oxides with silicon

Date:
October 24, 2010
Source:
University of Wisconsin-Madison
Summary:
In cold weather, many children can't resist breathing onto a window and writing in the condensation. Now imagine the window as an electronic device platform, the condensation as a special conductive gas, and the letters as lines of nanowires. Researchers have demonstrated methods to harness essentially this concept for broad applications in nanoelectronic devices, such as next-generation memory or tiny transistors.

In cold weather, many children can't resist breathing onto a window and writing in the condensation. Now imagine the window as an electronic device platform, the condensation as a special conductive gas, and the letters as lines of nanowires.

Related Articles


A team led by University of Wisconsin-Madison Materials Science and Engineering Professor Chang-Beom Eom has demonstrated methods to harness essentially this concept for broad applications in nanoelectronic devices, such as next-generation memory or tiny transistors. The discoveries were published Oct. 19 by the journal Nature Communications.

Eom's team has developed techniques to produce structures based on electronic oxides that can be integrated on a silicon substrate -- the most common electronic device platform.

"The structures we have developed, as well as other oxide-based electronic devices, are likely to be very important in nanoelectronic applications, when integrated with silicon," Eom says.

The term "oxide" refers to a compound with oxygen as a fundamental element. Oxides include millions of compounds, each with unique properties that could be valuable in electronics and nanoelectronics.

Usually, oxide materials cannot be grown on silicon because oxides and silicon have different, incompatible crystal structures. Eom's technique combines single-crystal expitaxy, postannealing and etching to create a process that permits the oxide structure to reside on silicon -- a significant accomplishment that solves a very complex challenge.

The new process allows the team to form a structure that puts three-atom-thick layers of lanthanum-aluminum-oxide in contact with strontium-titanium-oxide and then put the entire structure on top of a silicon substrate.

These two oxides are important because an "electron gas" forms at the interface of their layers, and a scanning probe microscope can make this gas layer conductive. The tip of the microscope is dragged along the surface with nanometer-scale accuracy, leaving behind a pattern of electrons that make the one-nanometer-thick gas layer. Using the tip, Eom's team can "draw" lines of these electrons and form conducting nanowires. The researchers also can "erase" those lines to take away conductivity in a region of the gas.

In order to integrate the oxides on silicon, the crystals must have a low level of defects, and researchers must have atomic control of the interface. More specifically, the top layer of strontium-titanium-oxide has to be totally pure and match up with a totally pure layer of lanthanum-oxide at the bottom of the lanthanum-aluminum-oxide; otherwise, the gas layer won't form between the oxide layers. Finally, the entire structure has been tuned to be compatible with the underlying silicon.

Eom's team includes UW-Madison Physics Professor Mark Rzchowski, postdocs and graduate students in materials science and engineering and physics, as well as collaborators from the University of Michigan, Ann Arbor, and the University of Pittsburgh, Pennsylvania. The National Science Foundation supports the research.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.W. Park , D.F. Bogorin , C. Cen , D.A. Felker , Y. Zhang , C.T. Nelson , C.W. Bark , C.M. Folkman , X.Q. Pan , M.S. Rzchowski , J. Levy, C.B. Eom. Creation of a two-dimensional electron gas at an oxide interface on silicon. Nature Communications, 2010; DOI: 10.1038/ncomms1096

Cite This Page:

University of Wisconsin-Madison. "New nano techniques integrate electron gas-producing oxides with silicon." ScienceDaily. ScienceDaily, 24 October 2010. <www.sciencedaily.com/releases/2010/10/101019111530.htm>.
University of Wisconsin-Madison. (2010, October 24). New nano techniques integrate electron gas-producing oxides with silicon. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2010/10/101019111530.htm
University of Wisconsin-Madison. "New nano techniques integrate electron gas-producing oxides with silicon." ScienceDaily. www.sciencedaily.com/releases/2010/10/101019111530.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins