Featured Research

from universities, journals, and other organizations

Current loss tracked down by magnetic fingerprint; Researchers solve the case of lost current in organic solar cells

Date:
October 28, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
Conventional solar cells made from crystalline silicon are difficult and energy-intensive to manufacture. Organic solar cells are cheaper, but have always produced less electricity. Why this is so has never been fully explained. Now, a method developed by researchers in Germany reveals that current flow inside a solar cell can be affected by the spin of the charge-carrying particles.

Scientists have been working on organic solar cells for about a decade. Their manufacture is environmentally friendly and they can be applied to all kinds of materials, such as plastic film, for instance. The trouble is, they only yield a fifth of the electrical energy that silicon solar cells do, with most of the electrical current trickling away into the material instead.

Related Articles


Scientists at Helmholtz-Zentrum Berlin (HZB) have developed a method that uses the magnetic fingerprint of the charge-carrying particles to reveal exactly how electricity is being lost. They did so by cleverly manipulating the magnetic properties of these particles. Together with Scottish researchers, they have published their findings in Physical Review Letters.

Being made from carbon compounds, in other words plastics, organic solar cells are also known as plastic solar cells. The heart of the cell is a layer only a hundred millionth of a millimetre thick, made of two components, polymers and soccer ball-shaped fullerenes, mixed together. When light strikes a layer of this mixture, the polymer component is set into an excited state, dubbed an exciton. When an exciton bumps into a fullerene, an electron jumps over to the soccer ball molecule and a "hole" remains behind in the polymer. So that current can flow, the electrons and holes must travel to their respectively opposite contacts. The electrons travel via the fullerenes while the holes travel via the polymer chain. The holes, which scientists call polarons, can obstruct one another along their path and thus reduce the efficiency of the solar cell. This sets the limit on how much electrical energy can be yielded from a given amount of solar energy.

Using electrically detected magnetic resonance (EDMR), the scientists demonstrated that the polarons always get in one another's way when their magnetic moment (spin) is identical. "For the first time, we have uncovered and thus proven the long-assumed formation of these so-called bipolarons," says Jan Behrends, who performed the measurements during his doctorate at the HZB Institute for Silicon Photovoltaics.

The researchers' EDMR method involved manipulating the spin of the polarons using an external magnetic field and a microwave pulse. Using a resonance effect, the randomly distributed spin could be turned and aimed like a compass needle. Measurements revealed that current flows freely when the tiny magnets are oppositely aligned, but is blocked when they are aligned in the same direction.

The researchers demonstrated these current losses in plastic solar cells at room temperature, having redesigned an experimental method originally developed for silicon. "With this important finding, we should soon see advancements in organic solar cell technology as new plastics are introduced that develop no spin blockades," says project leader Dr. Klaus Lips.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Behrends, A. Schnegg, K. Lips, E. Thomsen, A. Pandey, I. Samuel, D. Keeble. Bipolaron Formation in Organic Solar Cells Observed by Pulsed Electrically Detected Magnetic Resonance. Physical Review Letters, 2010; 105 (17) DOI: 10.1103/PhysRevLett.105.176601

Cite This Page:

Helmholtz Association of German Research Centres. "Current loss tracked down by magnetic fingerprint; Researchers solve the case of lost current in organic solar cells." ScienceDaily. ScienceDaily, 28 October 2010. <www.sciencedaily.com/releases/2010/10/101026111611.htm>.
Helmholtz Association of German Research Centres. (2010, October 28). Current loss tracked down by magnetic fingerprint; Researchers solve the case of lost current in organic solar cells. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2010/10/101026111611.htm
Helmholtz Association of German Research Centres. "Current loss tracked down by magnetic fingerprint; Researchers solve the case of lost current in organic solar cells." ScienceDaily. www.sciencedaily.com/releases/2010/10/101026111611.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins