Featured Research

from universities, journals, and other organizations

NASA's Kepler Mission changing how astronomers study distant stars

Date:
October 26, 2010
Source:
Iowa State University
Summary:
NASA's Kepler Mission is changing how astronomers study stars. Kepler, launched in March 2009, is returning data the astronomers say is amazing for its quantity and quality.

The Kepler spacecraft is continuously observing 170,000 stars in the Cygnus-Lyra region of the Milky Way galaxy.
Credit: Image by NASA/Kepler Mission/Wendy Stenzel

The quantity and quality of data coming back from NASA's Kepler Mission is changing how astronomers study stars, said Iowa State University's Steve Kawaler.

"It's really amazing," said Kawaler, an Iowa State professor of physics and astronomy. "It's as amazing as I feared. I didn't appreciate how hard it is to digest all the information efficiently."

The Kepler spacecraft, he said, "is a discovery machine."

Kepler launched March 6, 2009, from Florida's Cape Canaveral Air Force Station. The spacecraft is orbiting the sun carrying a photometer, or light meter, to measure changes in star brightness. The photometer includes a telescope 37 inches in diameter connected to a 95 megapixel CCD camera. That instrument is continually pointed at the Cygnus-Lyra region of the Milky Way galaxy. Its primary job is to use tiny variations in the brightness of the stars within its view to find earth-like planets that might be able to support life.

The Kepler Asteroseismic Investigation is also using data from that photometer to study stars. The investigation is led by a four-member steering committee: Kawaler, Chair Ron Gilliland of the Space Telescope Science Institute based in Baltimore, Jorgen Christensen-Dalsgaard and Hans Kjeldsen, both of Aarhus University in Aarhus, Denmark.

And Kepler has already buried the star-studiers in data.

Kawaler, who has served as director of a ground-based research consortium called the Whole Earth Telescope, said one year of data from Kepler will be the equivalent of about 300 years of data from the Whole Earth Telescope.

Kawaler has had a hand in turning some of that data into eight scientific papers that have been published or are in the process of being published. At Iowa State, he shares the analysis work with undergraduate Sheldon Kunkel; graduate students Bert Pablo and Riley Smith; visiting scientist Andrzej Baran of Krakow, Poland; and nearly 50 astronomers from around the world who are part of the Working Group on Compact Pulsators.

Some of the data describe a binary star system -- two stars held together by their gravity and orbiting a common center of mass. In this case, one star is a white dwarf, a star in the final stages of its life cycle; the other is a subdwarf B star, a star in an intermediate stage of development. Kepler not only returned information about the star system's velocity and mass, but also data providing a new demonstration of Einstein's Theory of Relativity.

Kawaler said when the subdwarf's orbit sends it toward Earth, Kepler detects 0.2 percent more light than when it moves away from Earth. This very slight difference is one effect of Einstein's Special Theory of Relativity: the theory predicts a very small increase in the overall brightness when the star is moving towards us (and a decrease when moving away). This relativistic "beaming" is a very small effect that has been accurately measured for stars for the first time with Kepler.

Kawaler said another Kepler advantage is its ability to collect data on a lot of stars. It is expected to continuously observe about 170,000 stars for at least three and a half years.

That gives researchers a much better idea about the average star, Kawaler said.

In the past, researchers analyzed a few interesting stars at a time. "But here, we're learning more about star fundamentals by studying the average guys. The large number of stars we're getting data from gives us a much more accurate picture of stars."

Kepler, for example, is giving researchers a better picture of red giant stars by more precisely measuring their oscillations or changes in brightness. Studies of those star quakes can answer questions about the interior properties of stars such as their density, temperature and composition. It's similar to how geologists study earthquakes to learn about the Earth's interior.

Our sun will evolve into a red giant in about five billion years. It will exhaust its hydrogen fuel, expand enormously and shine hundreds of times brighter than it does today. After that, it will be similar to the stars that Kawaler's group has been studying.

Thanks to Kepler, "We're understanding these stars better," Kawaler said. "And that's a very exciting thing, because these stars represent the future of our own sun."


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Cite This Page:

Iowa State University. "NASA's Kepler Mission changing how astronomers study distant stars." ScienceDaily. ScienceDaily, 26 October 2010. <www.sciencedaily.com/releases/2010/10/101026111729.htm>.
Iowa State University. (2010, October 26). NASA's Kepler Mission changing how astronomers study distant stars. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/10/101026111729.htm
Iowa State University. "NASA's Kepler Mission changing how astronomers study distant stars." ScienceDaily. www.sciencedaily.com/releases/2010/10/101026111729.htm (accessed July 30, 2014).

Share This




More Space & Time News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins