Featured Research

from universities, journals, and other organizations

Human immune system assassin's tricks visualized for the first time

Date:
November 1, 2010
Source:
Biotechnology and Biological Sciences Research Council
Summary:
Scientists have seen the human immune system's assassin -- a protein called perforin -- in action for the first time. The researchers used powerful electron microscopes to study the mechanism that perforin uses to punch holes in rogue cells.

Model of a membrane with perforin rings allowing the passage of granzymes into the cell.
Credit: Mike Kuiper

Scientists from the UK and Australia have seen the human immune system's assassin -- a protein called perforin -- in action for the first time. The UK team is based at Birkbeck College where they used powerful electron microscopes to study the mechanism that perforin uses to punch holes in rogue cells.

The research is published on October 31 in Nature.

Professor Helen Saibil, who leads the UK team at Birkbeck College, said: "Perforin is a powerful bullet in the arsenal of our immune system -- without it we could not deal with the thousands of rogue cells that turn up in our bodies through our lives."

"Perforin is our body's weapon of cleansing and death," said project leader Professor James Whisstock from Monash University, Melbourne, Australia.

Perforin works by punching holes in cells that have become cancerous or have been invaded by viruses. The holes let toxic enzymes into the cells, which then destroy them.

If perforin isn't working properly the body can't fight infected cells. And there is evidence from mouse studies that defective perforin leads to an upsurge in malignancy, particularly leukaemia, so says Professor Joe Trapani, head of the Cancer Immunology Program at the Peter MacCallum Cancer Centre in Melbourne, Australia.

The first observations that the human immune system could punch holes in target cells was made by the Nobel Laureate Jules Bordet over 110 years ago, but we have had to wait for the latest advances in structural molecular biology to find out how exactly this happens.

Professor Saibil continued: "From our previous work we already knew that bacterial toxins, such as the one involved in pneumonia, dramatically change shape to punch holes in membranes. We were fascinated by perforin and wanted to know its structure and how that might change in order for it to act as a hole-punching machine."

The structure was revealed by combining information about a single perforin molecule -- visualised using the Australian Synchrotron -- with Professor Saibil's electron microscope images (taken in London) of a ring of perforin molecules clustered together to form a hole in a cell membrane.

Professor Whisstock added: "Now we know how it works, we can start to fine tune it to fight cancer, malaria and diabetes."

Another interesting finding is that the important parts of the perforin molecule are quite similar to those toxins deployed by bacteria such as anthrax, listeria and streptococcus, showing that this method of making holes in cell membranes is quite ancient in evolution. "The molecular structure has survived for close to two billion years, we think," said Professor Trapani.

Perforin is also the culprit when the wrong cells are marked for elimination, either in autoimmune disease conditions, such as early onset diabetes, or in tissue rejection following bone marrow transplantation. So the researchers are now investigating ways to boost perforin for more effective cancer protection and therapy for acute diseases such as cerebral malaria. And with the help of a 600K grant from the Wellcome Trust they are working on potential inhibitors to suppress perforin and counter tissue rejection.

Professor Douglas Kell, BBSRC Chief Executive said: "New technologies in microscopy and synchrotron experiments have opened up tremendous opportunities for molecular biologists. This is a great example where the knowledge we gain about the normal structure and function of a molecule has the potential to underpin important developments in our health and well being."

The lead authors are Ruby Law from Monash University, Natalya Lukoyanova from Birkbeck College, London, and Ilia Voskoboinik from the Peter MacCallum Cancer Centre and the University of Melbourne. The project leaders are: Joe Trapani (Peter Mac), Helen Saibil (Birkbeck) and James Whisstock (Monash). The research was supported by the above institutions, the NHMRC, the ARC, the UK Biotechnology and Biological Sciences Research Council and the Wellcome Trust.


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Biotechnology and Biological Sciences Research Council. "Human immune system assassin's tricks visualized for the first time." ScienceDaily. ScienceDaily, 1 November 2010. <www.sciencedaily.com/releases/2010/10/101031154015.htm>.
Biotechnology and Biological Sciences Research Council. (2010, November 1). Human immune system assassin's tricks visualized for the first time. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2010/10/101031154015.htm
Biotechnology and Biological Sciences Research Council. "Human immune system assassin's tricks visualized for the first time." ScienceDaily. www.sciencedaily.com/releases/2010/10/101031154015.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
How A 'Rule Of Thumb' Could Slow Down Drinking

How A 'Rule Of Thumb' Could Slow Down Drinking

Newsy (Aug. 28, 2014) A study suggests people who follow a "rule of thumb" when pouring wine dispense less than those who don't have a particular amount in mind. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins