Featured Research

from universities, journals, and other organizations

Braided anyons could lead to more robust quantum computing

Date:
November 2, 2010
Source:
American Physical Society
Summary:
When confined to a 2-dimensional sheet, some exotic particle-like structures known as anyons appear to entwine in ways that could lead to robust quantum computing schemes, according to new research. Physicists are hopeful the anyons can be induced to follow paths that twist into braids that would be much more resistant to disturbances that corrupt data and calculations in quantum computers relying on individual particles.

When confined to a 2-dimensional sheet, some exotic particle-like structures known as anyons appear to entwine in ways that could lead to robust quantum computing schemes, according to research appearing in the Nov. 1 issue of the journal Physical Review B.

Related Articles


The physicists at Bell Laboratories who performed the research are hopeful the anyons can be induced to follow paths that twist into braids that would be much more resistant to disturbances that corrupt data and calculations in quantum computers relying on individual particles.

The anyons the researchers believe they have created are not true particles that can exist on their own, like electrons or protons. Instead anyons are quasiparticles that exist only inside a material, but move in ways that resemble free particles. When trapped in a flat sheet, the anyons braids can store quantum information or interact with other anyon braids to perform quantum calculations. Although braids in three dimensions unravel easily, braids trapped in two dimensions can't pull apart, which means they're able to withstand disturbances that would scramble the data and calculations in other quantum computers. Although creating braided anyons is difficult, the braids would allow quantum computers to dispense with the complications of error prevention and correction methods most competing quantum computers will probably require.

It's not entirely clear whether the researchers have succeeded in producing braided anyons yet, but as Kirill Shtengel (University of Caligornia, Riverside) points out in a Viewpoint article in the Nov. 1 edition of APS Physics, the new research is a major step forward on the path to discovering strange quasiparticles that could help revolutionize computers and lead to a host of novel quantum mechanical experiments.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Journal References:

  1. R. L. Willett, L. N. Pfeiffer, K. W. West. Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles. Physical Review B, 2010; 82: 205301 DOI: 10.1103/PhysRevB.82.205301
  2. Kirill Shtengel. Non-Abelian anyons: New particles for less than a billion? APS Physics, 2010; 3 (93) DOI: 10.1103/Physics.3.93

Cite This Page:

American Physical Society. "Braided anyons could lead to more robust quantum computing." ScienceDaily. ScienceDaily, 2 November 2010. <www.sciencedaily.com/releases/2010/11/101101102530.htm>.
American Physical Society. (2010, November 2). Braided anyons could lead to more robust quantum computing. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/11/101101102530.htm
American Physical Society. "Braided anyons could lead to more robust quantum computing." ScienceDaily. www.sciencedaily.com/releases/2010/11/101101102530.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Recharge Your Phone in 30 Seconds? Israeli Firm Says It Can

Recharge Your Phone in 30 Seconds? Israeli Firm Says It Can

Reuters - Innovations Video Online (Nov. 28, 2014) With consumers demanding more and more from their mobile devices, scientists in Israel and Singapore are developing super fast-charging batteries to power them. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
EU Pushes Google For Worldwide Right To Be Forgotten

EU Pushes Google For Worldwide Right To Be Forgotten

Newsy (Nov. 27, 2014) Privacy regulators recommend Google expand its requested removals to apply to all its web domains. Video provided by Newsy
Powered by NewsLook.com
Predictions Of Tablets' Demise Sound Familiar

Predictions Of Tablets' Demise Sound Familiar

Newsy (Nov. 26, 2014) The tablet's days are numbered, at least according to a recent IDC report. The market-research firm paints a grim outlook for tablets. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins