Featured Research

from universities, journals, and other organizations

Researchers develop light technology to combat hospital infections

Date:
November 15, 2010
Source:
University of Strathclyde
Summary:
A pioneering lighting system that can kill hospital superbugs -- including MRSA and C. difficile -- has been developed by researchers in Scotland. The technology decontaminates the air and exposed surfaces by bathing them in a narrow spectrum of visible-light wavelengths, known as HINS-light.

A new technology known as HINS-light decontaminates the air and exposed surfaces by bathing them in a narrow spectrum of visible-light wavelengths.
Credit: Image courtesy of University of Strathclyde

A pioneering lighting system that can kill hospital superbugs -- including MRSA and C. difficile -- has been developed by researchers at the University of Strathclyde in Glasgow, Scotland.

The technology decontaminates the air and exposed surfaces by bathing them in a narrow spectrum of visible-light wavelengths, known as HINS-light.

Clinical trials at Glasgow Royal Infirmary have shown that the HINS-light Environmental Decontamination System provides significantly greater reductions of bacterial pathogens in the hospital environment than can be achieved by cleaning and disinfection alone, providing a huge step forward in hospitals' ability to prevent the spread of infection.

This novel decontamination technology was discovered and developed by a multidisciplinary team of experts, Professor Scott MacGregor (Electrical Engineer), Professor John Anderson and Dr Michelle Maclean (Microbiologists) and Professor Gerry Woolsey (Optical Physicist).

Professor Anderson said: "The technology kills pathogens but is harmless to patients and staff, which means for the first time, hospitals can continuously disinfect wards and isolation rooms.

"The system works by using a narrow spectrum of visible-light wavelengths to excite molecules contained within bacteria. This in turn produces highly reactive chemical species that are lethal to bacteria such as meticillin-resistant Staphylococcus aureus, or MRSA, and Clostridium difficile, known as C.diff."

Dr Maclean added: "The clinical trials have shown that the technology can help prevent the environmental transmission of pathogens and thereby increase patient safety."

The technology uses HINS-light which has a violet hue, but the research team have used a combination of LED technologies to produce a warm white lighting system that can be used alongside normal hospital lighting.

Professor Scott MacGregor, Dean of the Faculty of Engineering, said: "New approaches to disinfection and sterilisation are urgently needed within the clinical environment, as traditional methods have significant limitations.

"Decontamination methods involving gas sterilants or UV-light can be hazardous to staff and patients, while cleaning, disinfection and hand washing, although essential routine procedures, have limited effectiveness and problems with compliance.

"HINS-light is a safe treatment that can be easily automated to provide continuous disinfection of wards and other areas of the clinical environment. The pervasive nature of light permits the treatment of air and all visible surfaces, regardless of accessibility, either through direct or reflected exposure to HINS-light within the treated environment."

The technology was developed in Strathclyde's pioneering Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), which is dedicated to controlling infection in today's healthcare environments.

The research has been supported by the University of Strathclyde, The Robertson Trust and the Scottish Enterprise Proof of Concept Programme, which supports the pre-commercialisation of leading-edge technologies emerging from Scotland.


Story Source:

The above story is based on materials provided by University of Strathclyde. Note: Materials may be edited for content and length.


Cite This Page:

University of Strathclyde. "Researchers develop light technology to combat hospital infections." ScienceDaily. ScienceDaily, 15 November 2010. <www.sciencedaily.com/releases/2010/11/101114190744.htm>.
University of Strathclyde. (2010, November 15). Researchers develop light technology to combat hospital infections. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/11/101114190744.htm
University of Strathclyde. "Researchers develop light technology to combat hospital infections." ScienceDaily. www.sciencedaily.com/releases/2010/11/101114190744.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins