Featured Research

from universities, journals, and other organizations

'Racetrack' magnetic memory could make computer memory 100,000 times faster

Date:
November 15, 2010
Source:
Ecole Polytechnique Federale de Lausanne (EPFL)
Summary:
Imagine a computer equipped with shock-proof memory that's 100,000 times faster and consumes less power than current hard disks. EPFL Professor Mathias Kläui is working on a new kind of "Racetrack" memory -- a high-volume, ultra-rapid non-volatile read-write magnetic memory that may soon make such a device possible.

A new kind of "Racetrack" memory -- a high-volume, ultra-rapid non-volatile read-write magnetic memory -- may soon pave the way for computers equipped with shock-proof memory that's 100,000 times faster and consumes less power than current hard disks.
Credit: Image courtesy of Ecole Polytechnique Federale de Lausanne (EPFL)

Imagine a computer equipped with shock-proof memory that's 100,000 times faster and consumes less power than current hard disks. EPFL Professor Mathias Kläui is working on a new kind of "Racetrack" memory, a high-volume, ultra-rapid non-volatile read-write magnetic memory that may soon make such a device possible.

Annoyed by how long it took his computer to boot up, Kläui began to think about an alternative. Hard disks are cheap and can store enormous quantities of data, but they are slow; every time a computer boots up, 2-3 minutes are lost while information is transferred from the hard disk into RAM (random access memory). The global cost in terms of lost productivity and energy consumption runs into the hundreds of millions of dollars a day.

Like the tried and true VHS videocassette, the proposed solution involves data recorded on magnetic tape. But the similarity ends there; in this system the tape would be a nickel-iron nanowire, a million times smaller than the classic tape. And unlike a magnetic videotape, in this system nothing moves mechanically. The bits of information stored in the wire are simply pushed around inside the tape using a spin polarized current, attaining the breakneck speed of several hundred meters per second in the process. It's like reading an entire VHS cassette in less than a second.

In order for the idea to be feasible, each bit of information must be clearly separated from the next so that the data can be read reliably. This is achieved by using domain walls with magnetic vortices to delineate two adjacent bits. To estimate the maximum velocity at which the bits can be moved, Kläui and his colleagues* carried out measurements on vortices and found that the physical mechanism could allow for possible higher access speeds than expected.

Their results were published online October 25, 2010, in the journal Physical Review Letters. Scientists at the Zurich Research Center of IBM (which is developing a racetrack memory) have confirmed the importance of the results in a Viewpoint article. Millions or even billions of nanowires would be embedded in a chip, providing enormous capacity on a shock-proof platform. A market-ready device could be available in as little as 5-7 years.

Racetrack memory promises to be a real breakthrough in data storage and retrieval. Racetrack-equipped computers would boot up instantly, and their information could be accessed 100,000 times more rapidly than with a traditional hard disk. They would also save energy. RAM needs to be powered every millionth of a second, so an idle computer consumes up to 300 mW just maintaining data in RAM. Because Racetrack memory doesn't have this constraint, energy consumption could be slashed by nearly a factor of 300, to a few mW while the memory is idle. It's an important consideration: computing and electronics currently consumes 6% of worldwide electricity, and is forecast to increase to 15% by 2025.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Federale de Lausanne (EPFL). Note: Materials may be edited for content and length.


Journal References:

  1. L. Heyne, J. Rhensius, D. Ilgaz, A. Bisig, U. Rüdiger, M. Kläui, L. Joly, F. Nolting, L. J. Heyderman, J. U. Thiele, and F. Kronast. Direct Determination of Large Spin-Torque Nonadiabaticity in Vortex Core Dynamics. Physical Review Letters, 2010; 105 (18): 187203 DOI: 10.1103/PhysRevLett.105.187203
  2. Rolf Allenspach, Philipp Eib. The alphabet of spin in nanostructures. Physics, 2010; 3: 91 DOI: 10.1103/Physics.3.91

Cite This Page:

Ecole Polytechnique Federale de Lausanne (EPFL). "'Racetrack' magnetic memory could make computer memory 100,000 times faster." ScienceDaily. ScienceDaily, 15 November 2010. <www.sciencedaily.com/releases/2010/11/101115090802.htm>.
Ecole Polytechnique Federale de Lausanne (EPFL). (2010, November 15). 'Racetrack' magnetic memory could make computer memory 100,000 times faster. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/11/101115090802.htm
Ecole Polytechnique Federale de Lausanne (EPFL). "'Racetrack' magnetic memory could make computer memory 100,000 times faster." ScienceDaily. www.sciencedaily.com/releases/2010/11/101115090802.htm (accessed April 24, 2014).

Share This



More Computers & Math News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) — A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com
High Court to Hear Dispute of TV Over Internet

High Court to Hear Dispute of TV Over Internet

AP (Apr. 22, 2014) — The future of Aereo, an online service that provides over-the-air TV channels, hinges on a battle with broadcasters that goes before the U.S. Supreme Court on Tuesday. (April 22) Video provided by AP
Powered by NewsLook.com
Aereo Takes on Broadcast TV Titans in Supreme Court Today

Aereo Takes on Broadcast TV Titans in Supreme Court Today

TheStreet (Apr. 22, 2014) — Aereo heads to the Supreme Court today to fight for its right to stream broadcast TV over the Internet -- against broadcasters who say the start-up infringes upon copyright law. TheStreet Deputy Managing Editor Leon Lazaroff explains the importance of the case in the TV industry and details what the outcome of it could mean for broadcasters and for cloud storage services -- as Aereo allows its subscribers to not just watch live TV shows but also store content to a DVR in the cloud. Video provided by TheStreet
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins