Featured Research

from universities, journals, and other organizations

Enzyme action could be target for diabetes, heart disease treatments

Date:
November 17, 2010
Source:
University of Cincinnati Academic Health Center
Summary:
Cardiac researchers have found a new cellular pathway that could help in developing therapeutic treatments for obesity-related disorders, like diabetes and heart disease.

Cardiac researchers at UC have found a new cellular pathway that could help in developing therapeutic treatments for obesity-related disorders, like diabetes and heart disease.

This research is being presented at the American Heart Association's Scientific Sessions in Chicago Nov. 16.

Tapan Chatterjee, PhD, and researchers in the division of cardiovascular diseases found that action by the enzyme histone deacetylase 9 (HDAC9) can lead to obesity-induced body fat dysfunction and that HDAC9-regulated pathways could be targets for potential treatment options in obesity-related diseases.

"Failure of fat cells to differentiate and properly store excess calories in obesity is associated with adipose tissue (fat) inflammation, fatty liver disease, insulin resistance, diabetes and increased cardiovascular diseases," Chatterjee says. "We know that dysfunctional fat tissue is the underlying culprit in obesity-related diseases; however, we do not know why fat tissue becomes dysfunctional when a person becomes obese."

Chatterjee says researchers in this study first identified HDAC9 regulator of fat cell differentiation within the living organism.

"Caloric intake promotes HDAC9 down-regulation to allow the conversion of precursor fat cells to 'functional' fat cells, capable of efficiently storing excess calories for future use and also maintaining whole body lipid and glucose stability," he says. "Ideally, fat cells should function as a reversible storage site of excess calories and as an endocrine organ to maintain systemic lipid and glucose stability.

"Unfortunately, during chronic over-feeding, we find HDAC9 level is up-regulated in fat tissue, thereby blocking the conversion which leads to adipose tissue dysfunction and the onset of diseases such as diabetes, liver disease, high blood pressure and heart disease -- the nation's No. 1 killer."

Researchers examined various members of the HDAC family of proteins and found that only HDAC9 showed a direct correlation to differentiation of precursor fat cells, both from human and mouse fat tissues.

"HDAC9 down-regulation is necessary for the differentiation of precursor fat cells to mature fat cells; forced up-regulation of HDAC9 by genetic manipulation blocks the differentiation of the precursor fat cells," Chatterjee says. "On the other hand, precursor fat cells from HDAC9 genetic knockout mice showed accelerated differentiation.

"We believe that HDAC9 keeps precursor fat cells in the undifferentiated state; metabolic cues trigger HDAC9 down-regulation allowing conversion of the precursor cells to mature fat cells. We are exploring the cellular signaling mechanism that promotes such down-regulation of this enzyme during the normal fat cell differentiation process."

Chatterjee says researchers were really interested in the tie between increased HDAC9 levels in fat tissue of mice and the caloric overload.

"Fat tissues from these obese mice showed dysfunction, with increased expression of pro-inflammatory agents and decreased expression of hormones responsible for maintaining whole body lipid and glucose stability," he says. "The fat tissues of these mice are not capable of efficiently storing excess calories and are not able to perform proper endocrine functions.

"The adaptive response fails for some reason during chronic caloric overload, leading to the generation of fat tissue mass that is dysfunctional."

Chatterjee says the HDAC9 level in fat cells is the underlying molecular culprit for dysfunctional fat tissue during obesity.

"We are currently examining HDAC9 knockout mice subjected to chronic high-fat feeding and think that HDAC9 gene removal will protect mice from obesity-linked adipose tissue dysfunction and associated metabolic disorders," he says.

"Identification of HDAC9 as a novel regulator of fat cell differentiation and the finding that elevated HDAC9 levels are associated with adipose tissue dysfunction in obesity are extremely interesting and novel findings," he continues.

Chatterjee's team is pursuing studies to understand how diet regulates HDAC9 levels in fat tissue and how HDAC9 up-regulation can be prevented during diet-induced obesity through pharmacological means.

"Our findings may help lead researchers to targeted therapies that may prevent the development of obesity-related disorders in humans."

This study was funded by a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Cincinnati Academic Health Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati Academic Health Center. "Enzyme action could be target for diabetes, heart disease treatments." ScienceDaily. ScienceDaily, 17 November 2010. <www.sciencedaily.com/releases/2010/11/101116152045.htm>.
University of Cincinnati Academic Health Center. (2010, November 17). Enzyme action could be target for diabetes, heart disease treatments. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/11/101116152045.htm
University of Cincinnati Academic Health Center. "Enzyme action could be target for diabetes, heart disease treatments." ScienceDaily. www.sciencedaily.com/releases/2010/11/101116152045.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins