Featured Research

from universities, journals, and other organizations

LIDAR applications in coastal morphology and hazard assessment

Date:
November 23, 2010
Source:
National Oceanography Centre, Southampton (UK)
Summary:
Scientists have used a sophisticated optical mapping technique to identify and accurately measure changes in coastal morphology following a catastrophic series of landslides.

“Our findings are important for assessing geological hazards and reducing the dangers to human settlements,” said geophysicist Professor Jon Bull of the University of Southampton’s School of Ocean and Earth Science based at the National Oceanography Centre, Southampton.

geological hazards and reducing the dangers to human settlements,” said geophysicist Professor Jon Bull of the University of Southampton’s School of Ocean and Earth Science based at the National Oceanography Centre, Southampton.

Matata is a small coastal town located on the Bay of Plenty at the northern end of New Zealand’s North Island close to a highly active volcanic zone. On 18 May 2005, the town was inundated by devastating debris flows. These flows resulted from torrential rain that triggered widespread landslips in the catchments of the Awatarariki and Waitepuru streams in the steeply rising hills behind the town.

Debris flows are liquefied landslides of water-saturated material that flow very rapidly down steep-sided channels. In the case of the 2005 Matata event, boulders, logs and other debris were carried by the flows, which also swept away cars and even whole buildings, although fortunately no-one was killed. The material eventually spilt out along the coast where it was deposited to form a large fan-like sediment deposit.

To help understand the complex pattern of sediment deposition, the researchers compared information obtained using a technique called Light Detection and Ranging technology (LIDAR) before and after the 2005 event.

“LIDAR uses the time taken for reflected light to return from objects or surfaces to determine the range, in a similar manner to radar. It can be used to monitor coastal evolution, and to identify and precisely measure landform changes resulting from geological events such as landslides,” explained Helen Miller, who worked on the project during her MSc project, and is now a PhD student at Southampton.

Based on LIDAR, eye-witness accounts, field investigations and aerial photographic surveys, theresearchers estimate that debris flows sourced in the Awatarariki stream transported at least 350,000 cubic metres of debris.

The researchers were able to map the sediment flow paths in detail, along with changes caused by the clear-up operation and the creation of man-made levees after the debris flow event. Their observations show that the final shape of the debris fan, as well as spatial differences in make-up and consistency, were largely influenced by existing physical features such as sand dunes.

“The use of LIDAR for debris flow hazard analysis is still in its early days, but it has the advantage of giving a synoptic view over a large area.” said Bull. “Ours is one of the first studies using ‘before and after’ comparisons of LIDAR data to assess changes in coastal morphology.”

 The researchers are Jon Bull, Helen Miller and Justin Dix (SOES), Darren Gravley (Universityof Canterbury, Christchurch),Daniel Costello and Dan Hikuroa (University of Auckland).

Helen Miller was supported by the University of Southampton (Richard Newitt Bursary) and the Society for Underwater Technology (Educational Support Fund).

 

Story Source:

The above story is based on materials provided by National Oceanography Centre, Southampton (UK). Note: Materials may be edited for content and length.


Journal Reference:

  1. J.M. Bull, H. Miller, D.M. Gravley, D. Costello, D.C.H. Hikuroa, J.K. Dix. Assessing debris flows using LIDAR differencing: 18 May 2005 Matata event, New Zealand. Geomorphology, 2010; 124 (1-2): 75 DOI: 10.1016/j.geomorph.2010.08.011

Cite This Page:

National Oceanography Centre, Southampton (UK). "LIDAR applications in coastal morphology and hazard assessment." ScienceDaily. ScienceDaily, 23 November 2010. <www.sciencedaily.com/releases/2010/11/101123102401.htm>.
National Oceanography Centre, Southampton (UK). (2010, November 23). LIDAR applications in coastal morphology and hazard assessment. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/11/101123102401.htm
National Oceanography Centre, Southampton (UK). "LIDAR applications in coastal morphology and hazard assessment." ScienceDaily. www.sciencedaily.com/releases/2010/11/101123102401.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins