Featured Research

from universities, journals, and other organizations

Chemists design molecule that responds to stimuli

Date:
December 6, 2010
Source:
City College of New York
Summary:
The venus flytrap plant captures its prey when it senses the presence of an insect on the tips of its leaves. An amphiphilic molecule acts in a similar manner by changing its structure when heated slightly and, then, reverting to its original form when cooled.

A cartoon representation of reversible organization from synthetic lipid-like molecules to form cell-like structures (called vesicles) upon change in temperature. The cell like structures cluster together similar to toad eggs or Caviar-like morphologies upon maintaining a particular temperature.
Credit: Image courtesy of City College of New York

The venus flytrap plant captures its prey when it senses the presence of an insect on the tips of its leaves. An amphiphilic molecule designed by chemists at The City College of New York acts in a similar manner by changing its structure when heated slightly and, then, reverting to its original form when cooled.

The finding, reported in the journal Angewandte Chemie, points toward the possibility of designing adaptive soft materials in the lab that take their cues from how nature responds to stimuli, said Dr. George John, associate professor and corresponding author.

Professor John and colleagues designed the molecule, which has both water-adhering and water-repelling ends, from cardanol, a naturally available material found in cashew nut shell liquid. When mixed with water, the molecules formed a self-assembled structure called a micelle with a water-adhering exterior and water-repelling interior.

Warming the micelles to 50 degrees Celsius caused them to take on a three-dimensional structure known as a vesicle that was larger -- 200 -- 300 nm in diameter -- and viscous, much like oil. "The molecules would stick together, similar to caviar," Professor John said. "When we touched the material with a glass rod, we could draw it out in a thin strand, much like glue."

Allowing the material to cool resulted in the molecules reverting to their original micellar structure. When they were reheated, they would again take on the viscous form.

The change in structure resulted because, while heating caused the micelles to rearrange, they began to interlock in a bi-layer arrangement and eventually undergo curvature. Directional hydrogen bonding of the amide linkages and stacking of the aromatic ring groups, further stabilized the assembly.

The objective of the research is to study responsive systems, Professor John said. "If we can understand the influence of saturation at the bi-layer stage, we can regulate the adaptive response to stimuli." This will require investigating the number of micelles needed in a mixture and where they need to be positioned.

Members of the team, besides Professor John, were: Dr. Sacha De Carlo, assistant professor of chemistry; Dr. Padmanava Pradhan, manager of CCNY's nuclear magnetic resonance facility; postdoctoral fellow Dr. Vijai Balachandran, and graduate student Swapnil Jadhav. The research was partially supported by the American Chemical Society Petroleum Research Fund.


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vijai S. Balachandran, Swapnil R. Jadhav, Padmanava Pradhan, Sacha De Carlo, George John. Adhesive Vesicles through Adaptive Response of a Biobased Surfactant. Angewandte Chemie International Edition, 2010; DOI: 10.1002/anie.201005439

Cite This Page:

City College of New York. "Chemists design molecule that responds to stimuli." ScienceDaily. ScienceDaily, 6 December 2010. <www.sciencedaily.com/releases/2010/11/101123151732.htm>.
City College of New York. (2010, December 6). Chemists design molecule that responds to stimuli. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2010/11/101123151732.htm
City College of New York. "Chemists design molecule that responds to stimuli." ScienceDaily. www.sciencedaily.com/releases/2010/11/101123151732.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins