Featured Research

from universities, journals, and other organizations

Hurricanes and other swirling natural phenomena explained

Date:
December 2, 2010
Source:
University of California - Santa Barbara
Summary:
Scientists can use cylinders as small as teapots to study the mechanisms involved in powerful hurricanes and other swirling natural phenomena.

Hurricane Katrina on August 29, 2005.
Credit: NASA

Scientists can use cylinders as small as teapots to study the mechanisms involved in powerful hurricanes and other swirling natural phenomena.

The earth's atmosphere and its molten outer core have one thing in common: Both contain powerful, swirling vortices. While in the atmosphere these vortices include cyclones and hurricanes, in the outer core they are essential for the formation of the earth's magnetic field. These phenomena in earth's interior and its atmosphere are both governed by the same natural mechanisms, according to experimental physicists at UC Santa Barbara working with a computation team in the Netherlands.

Using laboratory cylinders from 4 to 40 inches high, the team studied these underlying physical processes. The results are published in the journal Physical Review Letters.

"To study the atmosphere would be too complicated for our purposes," said Guenter Ahlers, senior author and professor of physics at UCSB. "Physicists like to take one ingredient of a complicated situation and study it in a quantitative way under ideal conditions." The research team, including first author Stephan Weiss, a postdoctoral fellow at UCSB, filled the laboratory cylinders with water, and heated the water from below and cooled it from above.

Due to that temperature difference, the warm fluid at the bottom plate rose, while the cold fluid at the top sank -- a phenomenon known as convection. In addition, the whole cylinder was rotated around its own axis; this had a strong influence on how the water flowed inside the cylinder. Rotation, such as the earth's rotation, is a key factor in the development of vortices. The temperature difference between the top and the bottom of the cylinder is another causal factor since it drives the flow in the first place. Finally, the relation of the diameter of the cylinder to the height is also significant.

Ahlers and his team discovered a new unexpected phenomenon that was not known before for turbulent flows like this. When spinning the container slowly enough, no vortices occurred at first. But, at a certain critical rotation speed, the flow structure changed. Vortices then occurred inside the flow and the warm fluid was transported faster from the bottom to the top than at lower rotation rates. "It is remarkable that this point exists," Ahlers said. "You must rotate at a certain speed to get to this critical point."

The rotation rate at which the first vortices appeared depended on the relation between the diameter and the height of the cylinder. For wide cylinders that are not very high, this transition appeared at relatively low rotation rates, while for narrow but high cylinders, the cylinder had to rotate relatively fast in order to produce vortices. Further, it was found that vortices do not exist very close to the sidewall of the cylinder. Instead they always stayed a certain distance away from it. That characteristic distance is called the "healing length."

"You can't go from nothing to something quickly," said Ahlers. "The change must occur over a characteristic length. We found that when you slow down to a smaller rotation rate, the healing length increases."

The authors showed that their experimental findings are in keeping with a theoretical model similar to the one first developed by Vitaly Lazarevich Ginzburg and Lev Landau in the theory of superconductivity. That same model is also applicable to other areas of physics such as pattern formation and critical phenomena. The model explains that the very existence of the transition from the state without vortices to the one with them is due to the presence of the sidewalls of the container. For a sample so wide (relative to its height) that the walls become unimportant, the vortices would start to form even for very slow rotation. The model makes it possible to describe the experimental discoveries, reported in the article, in precise mathematical language.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephan Weiss, Richard Stevens, Jin-Qiang Zhong, Herman Clercx, Detlef Lohse, Guenter Ahlers. Finite-Size Effects Lead to Supercritical Bifurcations in Turbulent Rotating Rayleigh-Bιnard Convection. Physical Review Letters, 2010; 105 (22): 224501 DOI: 10.1103/PhysRevLett.105.224501

Cite This Page:

University of California - Santa Barbara. "Hurricanes and other swirling natural phenomena explained." ScienceDaily. ScienceDaily, 2 December 2010. <www.sciencedaily.com/releases/2010/11/101129141033.htm>.
University of California - Santa Barbara. (2010, December 2). Hurricanes and other swirling natural phenomena explained. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/11/101129141033.htm
University of California - Santa Barbara. "Hurricanes and other swirling natural phenomena explained." ScienceDaily. www.sciencedaily.com/releases/2010/11/101129141033.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins