Featured Research

from universities, journals, and other organizations

Tiny RNA shown to cause multiple types of leukemia

Date:
November 29, 2010
Source:
Whitehead Institute for Biomedical Research
Summary:
Researchers have shown in mouse models that overexpression of the microRNA 125b (miR-125b) can independently cause leukemia and accelerate the disease's progression in mice. According to estimates from the National Cancer Institute, more than 43,000 people in the United States will be diagnosed with some form of leukemia this year and approximately 22,000 will die from the disease.

Whitehead Institute researchers have shown in mouse models that overexpression of the microRNA 125b (miR-125b) can independently cause leukemia and accelerate the disease's progression. Their results are published in this week's online edition of the Proceedings of the National Academy of Sciences (PNAS).

"MicroRNAs are elevated in many cancers, but in humans and mice, can upregulation of a microRNA actually cause the cancer? That's the question," says Whitehead Institute Founding Member Harvey Lodish. "This 22 nucleotide RNA, one of the smallest RNAs in the body, apparently causes leukemia when it's overexpressed."

According to estimates from the National Cancer Institute, more than 43,000 people in the United States will be diagnosed with some form of leukemia in 2010 and approximately 22,000 will die from the disease. In leukemia, one type of blood cell divides in an uncontrolled fashion in the bone marrow, crowding out other blood cells and frequently causing lowered immunity, anemia, and organ damage.

Leukemias are differentiated by the cell type that hyperproliferates, be it a cell from the lymphoid lineage (B or T-cell) or the myeloid lineage that give rise to red cells, platelets or myeloid cells.

Like other cancers, leukemia is caused by genetic mutations that alter how cells divide, proliferate, or mature. Some leukemia-causing mutations, like the BCR-ABL gene fusion, are relatively well-studied, but little is known about many leukemia-causing mutations.

In the PNAS paper, first author Marina Bousquet examined a less-studied mutation that leads to miR-125b overexpression in some leukemia patients.

MicroRNAs, like miR-125b, are very short pieces of RNA that normally fine-tune the activity of their target genes. Some miR-125b targets have already been described, including genes involved in the P53 pathway. These targets, which were found by Lodish's former graduate student, Minh Le, are involved with programmed cell death (apoptosis).

Mutations can cause this fine-tuning mechanism to malfunction. In the case of the mutation studied by Bousquet, miR-125b is cranked up to 90 times its normal expression.

To see if this overexpression could actually cause leukemia on its own, Bousquet injected into mice fetal liver cells that overexpressed miR-125b. After 16 weeks, the mice showed extremely high miR-125b production. Between 12 and 29 weeks after the transplantation, half of the mice died from one of three types of leukemia: myeloproliferative neoplasm, B-cell acute lymphoblastic leukemia, or T-cell acute lymphoblastic leukemia.

"Because miR-125b can lead to different kinds of leukemia, it's a major cancer-causing miR," says Bousquet. "It's also interesting that overexpression of miR-125b is seen in patients with B-cell lymphoblastic leukemia and myeloid leukemia, so I'm pretty sure we can find overexpression in other leukemias."

After establishing that miR-125b overexpression can cause different leukemias, Bousquet tested whether miR-125b overexpression can also accelerate disease progression. Into mice without any bone marrow, she transplanted bone marrow cells that had either the BCR-ABL mutation or the BCR-ABL mutation with a miR-125b overproduction mutation. The mice with both mutations had a median survival of 21 days, compared with 35 days for the BCR-ABL-only control group, a statistically significant difference.

The two experiments show that miR-125b overexpression can be both the primary cause for leukemia and be a secondary agent that hastens its progression.

Although many of miR-125b's target genes have not yet been identified, Bousquet says they are probably involved in proliferation, and cell maturation.

"This is the problem with microRNAs -- each miR has many targets," says Bousquet, who will be investigating these targets further. "I would say there is not one good target, but I assume I will find a combination of targets."

Once identified, Bousquet hopes that miR-125b or its gene targets could be exploited therapeutically. Lodish, however remains skeptical.

"We know that miR-125b could trigger leukemia," says Lodish. "But what we don't know is once the cancer has progressed, whether you still need miR-125b. If established leukemia doesn't require miR-125b overexpression, then targeting the microRNA would have little effect."

This research was supported by the Leukemia and Lymphoma Foundation, Association pour la Recherche sur le Cancer (ARC), and the National Institutes of Health (NIH).

Harvey Lodish's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology and a professor of bioengineering at Massachusetts Institute of Technology.

Full Citations:

"MicroRNA miR-125b causes leukemia" PNAS, online the week of November 29, 2010. Marina Bousquet , H. Harris, Beiyan Zhou, Harvey Lodish.


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Bousquet, M. H. Harris, B. Zhou, H. F. Lodish. MicroRNA miR-125b causes leukemia. Proceedings of the National Academy of Sciences, 2010; 107 (50): 21558 DOI: 10.1073/pnas.1016611107

Cite This Page:

Whitehead Institute for Biomedical Research. "Tiny RNA shown to cause multiple types of leukemia." ScienceDaily. ScienceDaily, 29 November 2010. <www.sciencedaily.com/releases/2010/11/101129152426.htm>.
Whitehead Institute for Biomedical Research. (2010, November 29). Tiny RNA shown to cause multiple types of leukemia. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/11/101129152426.htm
Whitehead Institute for Biomedical Research. "Tiny RNA shown to cause multiple types of leukemia." ScienceDaily. www.sciencedaily.com/releases/2010/11/101129152426.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins