Featured Research

from universities, journals, and other organizations

Physicists create supernova in a jar

Date:
December 2, 2010
Source:
University of Toronto
Summary:
A team of physicists has mimicked a supernova -- an explosion of a star -- in miniature. In a certain type of supernova, the detonation starts with a flame ball buried deep inside a white dwarf. The flame ball is much lighter than its surroundings, so it rises rapidly making a plume topped with an accelerating smoke ring. In their experiment, the researchers created a smaller version of this process by triggering a special chemical reaction in a closed container that generates similar plumes and vortex rings.

A vertical tube of viscous solution contains stable reactants for the Iodate Arsenous Acid reaction. An indicator makes the solution red. Reaction is triggered at the base of a small tube at the bottom, leading to a growing plume that sheds accelerating vortex rings. No fluid is injected: all the buoyancy is created by the reaction itself. The process is analogous to the nuclear deflagration leading to the detonation of a type Ia supernova.
Credit: Experiment by Michael Rogers

A team of physicists from the University of Toronto and Rutgers University has mimicked a supernova -- an explosion of a star -- in miniature.

Related Articles


In a certain type of supernova, the detonation starts with a flame ball buried deep inside a white dwarf. The flame ball is much lighter than its surroundings, so it rises rapidly making a plume topped with an accelerating smoke ring.

"We created a smaller version of this process by triggering a special chemical reaction in a closed container that generates similar plumes and vortex rings," says Stephen Morris, a University of Toronto physics professor.

Autocatalytic chemical reactions release heat and change the composition of a solution, which can create buoyancy forces that can stir the liquid, leading to more reaction and a runaway explosive process. "A supernova is a dramatic example of this kind of self-sustaining explosion in which gravity and buoyancy forces are important effects. We wanted to see what the liquid motion would look like in such a self-stirred chemical reaction," says Michael Rogers, who led the experiment as part of his PhD research, under the supervision of Morris.

"It is extremely difficult to observe the inside of a real exploding star light years away so this experiment is an important window into the complex fluid motions that accompany such an event," Morris explains. "The study of such explosions in stars is crucial to understanding the size and evolution of the universe."

The research will appear in Physics Review E in the next few weeks. In addition to Morris and Rogers, the research team included Abdelfattah Zebib from Rutgers. The work was funded by the Natural Sciences and Engineering Research Council of Canada.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael C. Rogers, Abdel Zebib, Stephen W. Morris. Autocatalytic plume pinch-off. Physics Review E, 2010; (accepted) [link]

Cite This Page:

University of Toronto. "Physicists create supernova in a jar." ScienceDaily. ScienceDaily, 2 December 2010. <www.sciencedaily.com/releases/2010/12/101202124323.htm>.
University of Toronto. (2010, December 2). Physicists create supernova in a jar. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2010/12/101202124323.htm
University of Toronto. "Physicists create supernova in a jar." ScienceDaily. www.sciencedaily.com/releases/2010/12/101202124323.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Universe Could Be Full Of Tatooine Sunsets

The Universe Could Be Full Of Tatooine Sunsets

Newsy (Mar. 30, 2015) — University of Utah researchers say mathematical simulations show small, rocky planets, like Tatooine from "Star Wars," can form in dual-star systems. Video provided by Newsy
Powered by NewsLook.com
What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) — Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Raw: Astronauts Arrive at ISS for 1-Year Mission

Raw: Astronauts Arrive at ISS for 1-Year Mission

AP (Mar. 28, 2015) — The capsule carrying a Russian and an American who are to spend a year away from Earth docked Saturday with the International Space Station. (March 28) Video provided by AP
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) — Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins