Featured Research

from universities, journals, and other organizations

Learning the language of bacteria

Date:
December 6, 2010
Source:
University of Wisconsin-Madison
Summary:
Bacteria are among the simplest organisms in nature, but many of them can still talk to each other, using a chemical "language" that is critical to the process of infection. Sending and receiving chemical signals allows bacteria to mind their own business when they are scarce and vulnerable, and then mount an attack after they become numerous enough to overwhelm the host's immune system.

Bacteria are among the simplest organisms in nature, but many of them can still talk to each other, using a chemical "language" that is critical to the process of infection. Sending and receiving chemical signals allows bacteria to mind their own business when they are scarce and vulnerable, and then mount an attack after they become numerous enough to overwhelm the host's immune system.

This system, called "quorum sensing," is an interesting example of sophistication among microbes, says Helen Blackwell, an associate professor of chemistry at the University of Wisconsin-Madison. In practical terms, she adds, quorum sensing may provide an alternative therapeutic target as bacteria continue to evolve resistance to antibiotics.

Theoretically, blocking quorum sensing would prevent the bacteria from turning pathogenic and producing the toxins that are an immediate cause of disease in bacterial infections.

Bacteria use simple chemical signals to control quorum sensing, and Blackwell is interested in how these compounds work and in developing new ways to intercept them. In a study just published online in the journal ChemBioChem, Blackwell and colleagues Andrew Palmer, Evan Streng and Kelsea Jewell showed that several species of bacteria can respond to identical signals, suggesting that one drug could battle quorum sensing in several types of bacteria.

Many bacteria use a class of molecules called lactones for quorum sensing, and Blackwell's lab has synthesized many non-native lactones, and then tested them in two species of bacteria that use identical native lactone signals. Overall, the organisms responded similarly to the same synthetic molecules, despite the dramatic differences between the species.

These results suggest that the same basic chemical sensing mechanism could be common among microbes, Blackwell says. "That tells us that we can use these classes of chemicals to study -- and perhaps eventually fight -- a much broader range of bacteria."

Finding a broad-spectrum activity for the synthetic lactones is good news, Blackwell adds. "Bacteria come in countless varieties, and the ability to target multiple organisms with one compound could streamline the search for drugs. At the same time, we also have found differences in signal selectivity that may allow us to target some bacteria while ignoring others."

That could provide the best of both worlds, Blackwell says. One drug might halt multiple infections, but related drugs might affect only one microbe in a mixture. "The data indicate that it should be possible to design and use compounds that are either selective or broad-spectrum."

The non-native signaling compounds tested in Blackwell's study were first uncovered in Vibrio fischeri, the bacterium that produces light in the "flashlight squid," which lives in the Pacific Ocean. The flashlight squid and its glowing bacteria have a symbiotic relationship that benefits both parties and have been intensely studied by Ned Ruby and Margaret McFall-Ngai at UW-Madison. But quorum sensing is also active in bacteria that cause disease in animals and plants, Blackwell says.

The need for new ways to control bacteria reflects the rapid evolution and spread of bacterial resistance to the most powerful antibiotics. Antibiotics are no longer a high research priority at most pharmaceutical companies,

Blackwell says. "There is a crisis in antibiotic development, and there is a tremendous need to develop new ways to block bacterial infection. Academics can lead the way by identifying such targets"

Quorum sensing has attracted considerable interest as a way to keep bacteria from "behaving badly," Blackwell says. Because a drug that blocks the quorum signal would not kill bacteria but simply prevent them from releasing toxins and causing disease, "we anticipate that the bacteria are not going to develop resistance as quickly, if at all."

Blocking the quorum sensing system would be equivalent to using white noise to interfere with spoken communication, Blackwell adds. "Bacteria are always looking out for themselves, and they are looking for food and a safe place to live. If they try do this as individual cells, the host will fight them off, but as a group, bacteria can potentially overwhelm their host. If we can figure out how to stop them from 'counting themselves' via quorum sensing, we could block such group behavior, and that is what we are after."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Learning the language of bacteria." ScienceDaily. ScienceDaily, 6 December 2010. <www.sciencedaily.com/releases/2010/12/101206161820.htm>.
University of Wisconsin-Madison. (2010, December 6). Learning the language of bacteria. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/12/101206161820.htm
University of Wisconsin-Madison. "Learning the language of bacteria." ScienceDaily. www.sciencedaily.com/releases/2010/12/101206161820.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins