Featured Research

from universities, journals, and other organizations

Ultra-thin solar blind extreme ultraviolet imager developed

Date:
December 8, 2010
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
Researchers have developed an ultra-thin hybrid AlGaN-on-Si-based extreme ultraviolet (EUV) imager with only 10m pixel-to-pixel pitch. The wide-bandgap material (AlGaN) provides insensitivity to visible wavelengths and enhanced UV radiation hardness compared to silicon. Backside illumination in a hybrid design was used to achieve a very small pitch-to-pitch (10m only). The novel imager shows an excellent detection down to a wavelength of 1nm.

At the International Electron Devices Meeting in San Francisco, researchers with Imec presented an ultra-thin hybrid AlGaN-on-Si-based extreme ultraviolet (EUV) imager with only 10m pixel-to-pixel pitch. The wide-bandgap material (AlGaN) provides insensitivity to visible wavelengths and enhanced UV radiation hardness compared to silicon. Backside illumination in a hybrid design was used to achieve a very small pitch-to-pitch (10m only). The novel imager shows an excellent detection down to a wavelength of 1nm.

Ultraviolet detection is of particular interest for solar science, EUV microscopy and advanced EUV lithography tools. Sensors using wide-bandgap materials overcome the drawbacks of Si-based sensors such as their sensitivity to UV radiation damage and the need for filters to block the unnecessary visible and infrared radiation.

Imec's backside illuminated EUV imager is based on a state-of-the-art hybrid design integrating an AlGaN sensor on a silicon readout chip. A submicron thick AlGaN layer was grown on a Si(111) wafer using molecular beam epitaxy and a focal plane array of 256x256 pixels with a pixel-to-pixel pitch of 10 micron was processed. Each pixel contains a Schottky diode optimized for backside illumination. A custom read-out chip, based on capacitance transimpedance amplifiers, was fabricated in 0.35m CMOS technology. The AlGaN wafer and read-out chip were post-processed with indium solder bumps with 10m pixel-to-pixel pitch achieving excellent uniformity. The focal plane array and read-out chip were assembled using flip-chip bonding and subsequently the silicon substrate was locally removed to enable backside illumination of the active AlGaN layer. Finally, the imager was packaged and wire-bonded. Measurements demonstrated an excellent response down to a wavelength of 1nm.

These results were obtained in collaboration with CRHEA/CNRS (France) and the Royal Observatory of Belgium in the framework of the BOLD project of the European Space Agency (ESA).


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Ultra-thin solar blind extreme ultraviolet imager developed." ScienceDaily. ScienceDaily, 8 December 2010. <www.sciencedaily.com/releases/2010/12/101208083529.htm>.
Interuniversity Microelectronics Centre (IMEC). (2010, December 8). Ultra-thin solar blind extreme ultraviolet imager developed. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/12/101208083529.htm
Interuniversity Microelectronics Centre (IMEC). "Ultra-thin solar blind extreme ultraviolet imager developed." ScienceDaily. www.sciencedaily.com/releases/2010/12/101208083529.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins