Featured Research

from universities, journals, and other organizations

Astronomers detect first carbon-rich exoplanet

Date:
December 8, 2010
Source:
Massachusetts Institute of Technology
Summary:
Astronomers have discovered that a huge, searing-hot planet orbiting another star is loaded with an unusual amount of carbon. The planet, a gas giant named WASP-12b, is the first carbon-rich world ever observed. The discovery was made using NASA's Spitzer Space Telescope, along with previously published ground-based observations.

This artist's concept shows the searing-hot gas planet WASP-12b (orange orb) and its star. NASA's Spitzer Space Telescope discovered that the planet has more carbon than oxygen, making it the first carbon-rich planet ever observed.
Credit: NASA/JPL-Caltech

A team led by a former postdoctoral researcher in MIT's Department of Earth, Atmospheric and Planetary Sciences and the MIT Kavli Institute for Astrophysics, recently measured the first-ever planetary atmosphere that is substantially enriched in carbon. The researchers found that the carbon-to-oxygen ratio of WASP-12b, an exoplanet about 1.4 times the mass of Jupiter and located about 1,200 light years away, is greater than one. As they report in a paper to be published on Dec. 8 in Nature, this carbon-rich atmosphere supports the possibility that rocky exoplanets could be composed of pure carbon rocks like diamond or graphite rather than the silica-based rock found in Earth.

"This is new territory and will motivate researchers to study what the interiors of carbon-rich planets could be made of," says lead author Nikku Madhusudhan, who is now a postdoctoral researcher at Princeton University. Although WASP-12b is a "hot Jupiter," or a Jupiter-sized, extremely hot exoplanet, that is largely made of gas and has no surface to host life, the first-ever finding of a carbon-rich exoplanet is significant because it introduces an entirely new class of exotic exoplanets to explore. It's also possible that rockier, Earth-sized exoplanets may have formed around the same star as WASP-12b billions of years ago. If detected, these smaller planets could also have carbon-rich atmospheres and interiors, meaning that for life to exist on these planets, it might have to survive with very little water and oxygen, and plenty of methane, says Madhusudhan. That might not be so far-fetched given the recent announcement by NASA of the discovery on Earth of bacteria that can survive in arsenic, a poison to humans.

Astronomers can figure out a planet's atmospheric composition by observing its flux, or the light emitted by the planet, at different wavelengths. The team, coordinated by Joe Harrington, a planetary scientist at the University of Central Florida, used NASA's Spitzer Space Telescope to observe the flux from WASP-12b, at four wavelengths, right before it passed behind the star, an event known as secondary eclipse. Those observations were then combined with previously published observations, at three other wavelengths, obtained from Earth using the Canada-France-Hawaii Telescope in Hawaii. The planet was discovered in 2009 by researchers at the United Kingdom-based consortium for Wide Angle Search for Planets (WASP), who are also coauthors of the study.

Madhusudhan used the observations to conduct a detailed atmospheric analysis using a modeling technique he pioneered for exoplanetary atmospheres. The computer program he developed combines certain variables, such as a planet's temperature distribution, with different amounts of the most prominent molecules that exist in such atmospheres, which are methane, carbon dioxide, carbon monoxide, water vapor and ammonia, into one formula that produces a theoretical spectrum, or flux at different wavelengths. The program analyzes millions of combinations of these variables, tracking those that most closely match the flux values measured by the telescopes. Through statistical analysis of these values, Madhusudhan can determine the most likely composition of the atmosphere.

Based on theories about what extremely hot Jupiters such as WASP-12b should look like, assuming carbon-to-oxygen ratios of 0.5, previous models suggested that their atmospheres should have plenty of water vapor, very little methane and an atmospheric layer known as a stratosphere. Instead, Madhusudhan's team detected an atmosphere with more than 100 times excess methane and less water than had been expected. The observed composition is consistent with a carbon-to-oxygen ratio that is greater than one. The team also discovered the lack of a strong stratosphere, which contradicts existing theories of hot Jupiter atmospheres.

The discovery suggests that chunks of rock called planetesimals that slammed together to form WASP-12b billions of years ago may have been made of carbon-rich compounds like tar -- a far cry from the watery, icy planetesimals that are thought to have formed the solar-system planets. This means that if smaller exoplanets are found to have carbon-rich atmospheres, their surfaces could be covered in a tar-like substance. Future research will investigate whether life -- perhaps drastically different from life as we know it -- could survive in such a carbon-rich environment.

"It's exciting to even think about the possibility" of what carbon-rich planets could look like, says Adam Showman, a planetary scientist at the University of Arizona, who explains that although researchers knew that other solar systems should have a range of carbon-to-oxygen values, "this paper finally moves the discussion from pure speculation to plausible reality." He notes that exoplanets with carbon-based interiors could exhibit a range of surface features, atmospheric compositions and potential for oceans or life.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Morgan Bettex, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nikku Madhusudhan, Joseph Harrington, Kevin B. Stevenson, Sarah Nymeyer, Christopher J. Campo, Peter J. Wheatley, Drake Deming, Jasmina Blecic, Ryan A. Hardy, Nate B. Lust, David R. Anderson, Andrew Collier-Cameron, Christopher B. T. Britt, William C. Bowman, Leslie Hebb, Coel Hellier, Pierre F. L. Maxted, Don Pollacco, Richard G. West. A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature, 2010; DOI: 10.1038/nature09602

Cite This Page:

Massachusetts Institute of Technology. "Astronomers detect first carbon-rich exoplanet." ScienceDaily. ScienceDaily, 8 December 2010. <www.sciencedaily.com/releases/2010/12/101208132212.htm>.
Massachusetts Institute of Technology. (2010, December 8). Astronomers detect first carbon-rich exoplanet. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/12/101208132212.htm
Massachusetts Institute of Technology. "Astronomers detect first carbon-rich exoplanet." ScienceDaily. www.sciencedaily.com/releases/2010/12/101208132212.htm (accessed April 19, 2014).

Share This



More Space & Time News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

A Hoax? Cosmetics Company Wants To Brighten The Moon

A Hoax? Cosmetics Company Wants To Brighten The Moon

Newsy (Apr. 19, 2014) FOREO, a Swedish cosmetics company, says it wants to brighten the moon to lower electricity costs. Video provided by Newsy
Powered by NewsLook.com
Raw: Space X Launches to Space Station

Raw: Space X Launches to Space Station

AP (Apr. 18, 2014) On it's second attempt this week, The Space X company launched Friday from Cape Canaveral to ferry supplies to the International Space Station. (April 18) Video provided by AP
Powered by NewsLook.com
Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Reuters - US Online Video (Apr. 18, 2014) The rocket, built and operated by Space Exploration Technologies, carries a Dragon cargo ship loaded with supplies and equipment destined for the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Earth's Near-Twin Found Orbiting Red Dwarf

Earth's Near-Twin Found Orbiting Red Dwarf

Newsy (Apr. 17, 2014) The newly-discovered planet is roughly the size of Earth and could have liquid water on its surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins