Featured Research

from universities, journals, and other organizations

Staph bacteria: Blood-sucking superbug prefers taste of humans

Date:
December 16, 2010
Source:
Vanderbilt University Medical Center
Summary:
Scientists have discovered that "staph" bacteria prefer to bind to human hemoglobin -- the oxygen-carrying protein that contains iron -- over hemoglobin from other animals. The findings help explain why staph preferentially infects people and suggest that genetic variations in hemoglobin may make some individuals more susceptible to staph infections.

"Staph" bacteria feed on blood. They need the iron that's hidden away inside red blood cells to grow and cause infections. It turns out that these microbial vampires prefer the taste of human blood, Vanderbilt University scientists have discovered.

Related Articles


The researchers report in the Dec. 16 issue of Cell Host & Microbe that Staphylococcus aureus (staph) favors human hemoglobin -- the oxygen-carrying protein that contains iron -- over hemoglobin from other animals. The findings help explain why staph preferentially infects people and suggest that genetic variations in hemoglobin may make some individuals more susceptible to staph infections.

Staph lives in the noses of about 30 percent of all people -- usually without making them ill, said Eric Skaar, Ph.D., M.P.H., associate professor of Microbiology and Immunology.

"A big question in staph biology is: why do some people continuously get infected, or suffer very serious staph infections, while other people do not? Variations in hemoglobin could contribute," he said.

If that is the case -- something Skaar and his team plan to explore -- it might be possible to identify patients who are more susceptible to a staph infection and provide them with prophylactic therapy in advance of a hospital stay or surgery.

Staph is a significant threat to global public health. It is the leading cause of pus-forming skin and soft tissue infections, the leading cause of infectious heart disease, the No. 1 hospital-acquired infection, and one of four leading causes of food-borne illness. Antibiotic-resistant strains of S. aureus -- such as MRSA -- are on the rise in hospitals and communities.

"It seems as if complete and total antibiotic resistance of the organism is inevitable at this point," Skaar said.

This dire outlook motivates Skaar and his colleagues in their search for new antibiotic targets. The group has focused on staph's nutritional requirements, searching for ways to "starve" the bug of the metals (such as iron) that it needs.

Staph obtains iron by popping open red blood cells, binding to the hemoglobin, and extracting iron from it. Skaar and colleagues previously identified the staph receptor for hemoglobin, a protein called IsdB.

In the current studies, they showed that S. aureus bacteria bind human hemoglobin preferentially over other animal hemoglobins, and that this binding occurs through the IsdB receptor. The preferential recognition of human hemoglobin by S. aureus is due to the increased affinity of IsdB for human hemoglobin compared to other animal hemoglobins.

The team studied staph's ability to infect a mouse expressing human hemoglobin (a "humanized" mouse model) and found that these mice were more susceptible to a systemic staph infection than control mice.

The investigators also examined the hemoglobin-binding preferences of other microbes and found that bacterial pathogens that exclusively infect humans, such as the bacteria that cause diphtheria, prefer human hemoglobin compared to other animal hemoglobins. In contrast, pathogens such as Pseudomonas and Bacillus anthracis (the cause of anthrax), which infect a number of different animals, "didn't exhibit a hemoglobin preference," Skaar said.

The human hemoglobin-expressing mice will be a valuable research tool, Skaar said, because staph infects these mice in a way that more closely mimics the infectious process in humans. His team will also explore whether these mice provide a good model for studying the infectious biology of other pathogens.

Skaar hopes to utilize Vanderbilt's DNA Databank, BioVU, to examine whether genetic variations in hemoglobin contribute to individual susceptibility to staph infections. His team will continue to study the molecular interaction between hemoglobin and the IsdB receptor, with the aim of disrupting this interaction with new antibiotic therapeutics.

Graduate student Gleb Pishchany is the first author of the Cell Host & Microbe paper. Other Vanderbilt authors include Amanda McCoy, Victor Torres, Ph.D., Jens Krause, M.D., and James Crowe Jr., M.D. The studies were supported by the National Institutes of Health, the American Heart Association and the Burroughs Wellcome Fund.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gleb Pishchany, Amanda L. McCoy, Victor J. Torres, Jens C. Krause, James E. Crowe, Mary E. Fabry, Eric P. Skaar. Specificity for Human Hemoglobin Enhances Staphylococcus aureus Infection. Cell Host & Microbe, Volume 8, Issue 6, 544-550, 16 December 2010 DOI: 10.1016/j.chom.2010.11.002

Cite This Page:

Vanderbilt University Medical Center. "Staph bacteria: Blood-sucking superbug prefers taste of humans." ScienceDaily. ScienceDaily, 16 December 2010. <www.sciencedaily.com/releases/2010/12/101215121908.htm>.
Vanderbilt University Medical Center. (2010, December 16). Staph bacteria: Blood-sucking superbug prefers taste of humans. ScienceDaily. Retrieved December 29, 2014 from www.sciencedaily.com/releases/2010/12/101215121908.htm
Vanderbilt University Medical Center. "Staph bacteria: Blood-sucking superbug prefers taste of humans." ScienceDaily. www.sciencedaily.com/releases/2010/12/101215121908.htm (accessed December 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Lab Flask Helps Turn CO2 Into Medicine

New Lab Flask Helps Turn CO2 Into Medicine

Reuters - Innovations Video Online (Dec. 29, 2014) The traditional round-bottom glass used by chemists for generations could be under threat after Danish scientists invent a new two-chamber flask that can change CO2 into medicine, while protecting against contact with dangerous chemicals. Jim Drury went to see how it worked. Video provided by Reuters
Powered by NewsLook.com
Dynamic Desk Chair Turns Body Into Computer Mouse

Dynamic Desk Chair Turns Body Into Computer Mouse

Reuters - Innovations Video Online (Dec. 29, 2014) A dynamic desk chair that turns the human body into a computer mouse aims to cut down the time office workers spend sitting still. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Homes Built on Toxic Site Despite EPA Warnings

Homes Built on Toxic Site Despite EPA Warnings

AP (Dec. 29, 2014) Thousands of pages of documents show federal regulators knew as early as 1991 that a North Carolina site potentially threatened the surrounding community's water and air, but failed to order a cleanup or warn nearby residents of the dangers. (Dec. 29) Video provided by AP
Powered by NewsLook.com
The Weirdest Health Studies Of 2014

The Weirdest Health Studies Of 2014

Newsy (Dec. 27, 2014) One of this year's strangest studies found people prefer painful electric shocks to being alone with their thoughts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins