Featured Research

from universities, journals, and other organizations

Organic electronic ratchets doing work

Date:
December 20, 2010
Source:
Eindhoven University of Technology
Summary:
Researchers have succeeded in causing electron transport using an electronic ‘ratchet’. This is the first time that usable powers have been generated at room temperature with a device of this kind. The finding opens the possibility of a new kind of wireless drive for microelectronic circuits.

Erik Roeling and Martijn Kemerink (Eindhoven University of Technology). Erik uses marbles to demonstrate how their electronic device works.
Credit: Bart van Overbeeke

Researchers at Eindhoven University of Technology (TU/e) and the COBRA research institute in Eindhoven have succeeded in causing electron transport using an electronic 'ratchet'. This is the first time that usable powers have been generated at room temperature with a device of this kind. The finding opens the possibility of a new kind of wireless drive for microelectronic circuits.

An article about the research, which is led by Martijn Kemerink (TU/e Department of Applied Physics), is in the January 2011 edition of Nature Materials, with PhD student. Erik Roeling as first author. The article shows that in principle undirected electrical forces (caused by an alternating voltage) can cause a net movement of electrons in a single direction. Effectively this means that a direct current is generated by an alternating voltage.

This is the first time that usable voltages (sufficient to power a logic circuit, as the researchers have demonstrated) have been generated at room temperature with this kind of periodical, undirected force. Up to now very low temperatures have been required, and only a fraction of the power achieved by Roeling and Kemerink has been generated. The researchers used a modified organic field-effect transistor for their experiments, where electrodes are positioned asymmetrically below the channel of the transistor. Under the influence of the alternating voltage the electrons were able to make small steps in one direction, but not in the other -- the same principle as a ratchet or pawl wheel. This movement of electrons is comparable to shaking marbles on a washboard -- these also show a net movement in one direction. 

The researchers have included their finding in a logic circuit. In their test setup the ratchet was found to provide sufficient energy to power the circuit.

According to the researchers the finding is a first step on the way to a new method for wireless powering of microelectronic devices with a low energy consumption -- for example identification tags, implanted ICs or sensors. However substantial further research will be needed before such applications can be realized


Story Source:

The above story is based on materials provided by Eindhoven University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erik M. Roeling, Wijnand Chr. Germs, Barry Smalbrugge, Erik Jan Geluk, Tjibbe de Vries, Renι A. J. Janssen, Martijn Kemerink. Organic electronic ratchets doing work. Nature Materials, 2010; 10 (1): 51 DOI: 10.1038/NMAT2922

Cite This Page:

Eindhoven University of Technology. "Organic electronic ratchets doing work." ScienceDaily. ScienceDaily, 20 December 2010. <www.sciencedaily.com/releases/2010/12/101217152524.htm>.
Eindhoven University of Technology. (2010, December 20). Organic electronic ratchets doing work. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/12/101217152524.htm
Eindhoven University of Technology. "Organic electronic ratchets doing work." ScienceDaily. www.sciencedaily.com/releases/2010/12/101217152524.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins