Featured Research

from universities, journals, and other organizations

Simple screen can help isolate virulent parts of pathogenic bacteria gene structures

Date:
December 23, 2010
Source:
University of Exeter
Summary:
Researchers have developed a new approach to studying potentially deadly disease-causing bacteria which could help speed up the process of finding vaccines. The scientists have pioneered a simple screen which can help isolate the virulent parts of the gene structures of pathogenic bacteria. The screen allows researchers to simultaneously run thousands of tests where genes from the pathogen are pitted against the human blood cells that normally attack them.

Researchers at the University of Exeter have developed a new approach to studying potentially deadly disease-causing bacteria which could help speed up the process of finding vaccines.

Dr Andrea Dowling, from the Centre for Ecology and Conservation at the university's Cornwall Campus, has pioneered a simple screen which can help isolate the virulent parts of the gene structures of pathogenic* bacteria.

The screen allows researchers to simultaneously run thousands of tests where genes from the pathogen are pitted against the human blood cells that normally attack them.

"By looking at the results from these tests it is possible to determine which parts of a pathogen's genetic code allow it to override immune systems," said Dr Dowling.

"From there we can focus in on those key areas to find out how the pathogen works and how we can develop vaccines. The screen allows us to study and tackle the causes of disease and infection much quicker than other methods."

The screen has been used by Dr Dowling and other researchers at Exeter to look at genes in the important pathogen, Burkholderia pseudomallei**, which causes the potentially deadly human disease, melioidosis. The research is published in the journal, PLoS ONE.

Burkholderia appears to be able to infect man directly from the environment via cuts and grazes. Normally any invading bacteria would be consumed by the body's immune system, but Burkholderia bacteria seem to resist being eaten and can spread to other parts of the body in a very nasty infection.

Using the screen, the researchers were able to isolate the unique parts of Burkholderia's genetic code which could be responsible for its resistance to the human immune system.

Dr Dowling explained: "We used library-clones which each contain a genetic region of Burkholderia, and then studied each one's ability to kill immune cells to find what are known as virulence factors -- basically the parts which allow it to override the immune system. Using the screen, we established the potential locations of that virulence factor much quicker than using normal methods.

"We can then study the mechanism for these factors using microbiological, cellular and biochemical techniques to see whether disrupting the virulence factor reduces the abilities of this bacteria to overcome the immune system."

Professor Richard Ffrench-Constant, a co-author of the research, said: "Knowledge gained from this research provides essential insights into how this poorly understood, but extremely serious human pathogen works to cause disease, and, crucially, it helps us identify candidates for the development of much needed vaccines."

The techniques used for this research are not only important in looking at Burkholderia, but can also be used on many other pathogens.

This work was supported by Biotechnology and Biological Sciences Research Council (BBSRC) and N.R.W., and by the European Community Seventh Framework Programme.

Editor's notes

*Almost half of all human diseases are caused by pathogenic bacteria. Pathogens produce symptoms of disease by disrupting the normal cellular processes of their host by producing agents known as 'virulence factors'. Virulence factors can allow the bacteria to adhere, invade, replicate within and/or kill their host cells and tissues, allowing the pathogen to establish infection. Understanding how these virulence factors work enhances ability to combat disease.

**Burkholderia pseudomallei is a serious human pathogen which causes a disease known as melioidosis. Infection is usually caused by exposure of cuts on the skin to contaminated soil or water, or via inhalation. B. pseudomallei is widespread in South East Asia and Northern Australia where lethal infection can result in a mortality rate of up to 50%. This pathogen is highly resistant to antibiotics and is listed as a Category B bio-warfare threat making it an extremely high priority for research as no vaccine currently exists. B. pseudomallei have a complex intra-cellular lifestyle. The pathogen uses its virulence factors to attach, invade, replicate within and kill host cells thus establishing infection. These mechanisms of pathogenicity are not well understood and research into them will be critical in identifying the key novel virulence factors behind them, how they interact with the host cell, and how they may be used for vaccine development.


Story Source:

The above story is based on materials provided by University of Exeter. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrea J. Dowling, Paul A. Wilkinson, Matthew T. G. Holden, Michael A. Quail, Stephen D. Bentley, Julia Reger, Nicholas R. Waterfield, Richard W. Titball, Richard H. ffrench-Constant. Genome-Wide Analysis Reveals Loci Encoding Anti-Macrophage Factors in the Human Pathogen Burkholderia pseudomallei K96243. PLoS ONE, 2010; 5 (12): e15693 DOI: 10.1371/journal.pone.0015693

Cite This Page:

University of Exeter. "Simple screen can help isolate virulent parts of pathogenic bacteria gene structures." ScienceDaily. ScienceDaily, 23 December 2010. <www.sciencedaily.com/releases/2010/12/101223113347.htm>.
University of Exeter. (2010, December 23). Simple screen can help isolate virulent parts of pathogenic bacteria gene structures. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/12/101223113347.htm
University of Exeter. "Simple screen can help isolate virulent parts of pathogenic bacteria gene structures." ScienceDaily. www.sciencedaily.com/releases/2010/12/101223113347.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins