Featured Research

from universities, journals, and other organizations

Why some cancers become malignant and others don't

Date:
January 7, 2011
Source:
University of Montreal
Summary:
Cancer cells reproduce by dividing in two, but a molecule known as PML limits how many times this can happen, according to researchers. The team showed that malignant cancers have problems with this molecule, meaning that in its absence they can continue to grow and eventually spread to other organs.

Cancer cells reproduce by dividing in two, but a molecule known as PML limits how many times this can happen, according to researchers led by Dr. Gerardo Ferbeyre of the University of Montreal's Department of Biochemistry. The team showed that malignant cancers have problems with this molecule, meaning that in its absence they can continue to grow and eventually spread to other organs. Importantly, the presence of PML molecules can easily be detected, and could serve to diagnose whether a tumor is malignant or not.

Related Articles


"We discovered that benign cancer cells produce the PML molecule and display abundant PML bodies, keeping them in a dormant, senescent state. Malignant cancer cells either don't make or fail to organize PML bodies, and thus proliferate uncontrollably," Ferbeyre explained. Senescence is the mature stage in a cell's life at which in can no longer reproduce and it is a natural defense against cancer formation. When tumor cells are benign, it means that they cannot spread or grow into other parts of the body.

The team of researchers based both on campus and at the University of Montreal Hospital Research Centre built on Dr. Ferbeyre's prior discovery that PML is able to force cells to enter senescence. However, for the past ten years, the mechanism by which this was achieved remained mostly unknown. Hospital researchers worked with patients to collect samples that enabled the team to make their discovery.

"Our findings unravel the unexpected ability of PML to organize a network of tumor suppressor proteins to repress the expression or the amount of other proteins required for cell proliferation," explained researcher V้ronique Bourdeau. Such proteins are essential molecules in our body that play a key role in controlling the birth, growth and death of cells. Researcher Mathieu Vernier emphasized that "this is an important finding with implications for our understanding on how the normal organism defends itself from the threat of cancer."

The work offers exciting avenues for future research. "Our discovery opens new possibilities to explore what other molecules are involved in generating senescence: a goal we consider important if we want to design therapies that turn malignant tumors into benign tumors," Ferbeyre said. The research was published on January 1, 2011 in Genes and Development, and received funding from the Canadian Cancer Society and by the Fonds de la recherche en Sant้ du Qu้bec.


Story Source:

The above story is based on materials provided by University of Montreal. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Vernier, V. Bourdeau, M.-F. Gaumont-Leclerc, O. Moiseeva, V. Begin, F. Saad, A.-M. Mes-Masson, G. Ferbeyre. Regulation of E2Fs and senescence by PML nuclear bodies. Genes & Development, 2011; 25 (1): 41 DOI: 10.1101/gad.1975111

Cite This Page:

University of Montreal. "Why some cancers become malignant and others don't." ScienceDaily. ScienceDaily, 7 January 2011. <www.sciencedaily.com/releases/2011/01/110106070908.htm>.
University of Montreal. (2011, January 7). Why some cancers become malignant and others don't. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2011/01/110106070908.htm
University of Montreal. "Why some cancers become malignant and others don't." ScienceDaily. www.sciencedaily.com/releases/2011/01/110106070908.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins