Featured Research

from universities, journals, and other organizations

NASA's Fermi catches thunderstorms hurling antimatter into space

Date:
January 11, 2011
Source:
NASA/Goddard Space Flight Center
Summary:
Scientists have detected beams of antimatter produced above thunderstorms on Earth -- a phenomenon never seen before. Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.

On Dec. 14, 2009, while NASA's Fermi flew over Egypt, the spacecraft intercepted a particle beam from a terrestrial gamma-ray flash (TGF) that occurred over its horizon. Fermi's Gamma-ray Burst Monitor detected the signal of positrons annihilating on the spacecraft -- not once, but twice. After passing Fermi, some of the particles reflected off of a magnetic "mirror" point and returned.
Credit: NASA's Goddard Space Flight Center

Scientists using NASA's Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth -- a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a member of Fermi's Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH). He presented the findings January 11, during a news briefing at the American Astronomical Society meeting in Seattle.

Fermi is designed to monitor gamma rays, the highest energy form of light. When antimatter striking Fermi collides with a particle of normal matter, both particles immediately are annihilated and transformed into gamma rays. The GBM has detected gamma rays with energies of 511,000 electron volts, a signal indicating an electron has met its antimatter counterpart, a positron.

Although Fermi's GBM is designed to observe high-energy events in the universe, it's also providing valuable insights into this strange phenomenon. The GBM constantly monitors the entire celestial sky above and the Earth below. The GBM team has identified 130 TGFs since Fermi's launch in 2008.

"In orbit for less than three years, the Fermi mission has proven to be an amazing tool to probe the universe. Now we learn that it can discover mysteries much, much closer to home," said Ilana Harrus, Fermi program scientist at NASA Headquarters in Washington.

The spacecraft was located immediately above a thunderstorm for most of the observed TGFs, but in four cases, storms were far from Fermi. In addition, lightning-generated radio signals detected by a global monitoring network indicated the only lightning at the time was hundreds or more miles away. During one TGF, which occurred on Dec. 14, 2009, Fermi was located over Egypt. But the active storm was in Zambia, some 2,800 miles to the south. The distant storm was below Fermi's horizon, so any gamma rays it produced could not have been detected.

"Even though Fermi couldn't see the storm, the spacecraft nevertheless was magnetically connected to it," said Joseph Dwyer at the Florida Institute of Technology in Melbourne, Fla. "The TGF produced high-speed electrons and positrons, which then rode up Earth's magnetic field to strike the spacecraft."

The beam continued past Fermi, reached a location, known as a mirror point, where its motion was reversed, and then hit the spacecraft a second time just 23 milliseconds later. Each time, positrons in the beam collided with electrons in the spacecraft. The particles annihilated each other, emitting gamma rays detected by Fermi's GBM.

Scientists long have suspected TGFs arise from the strong electric fields near the tops of thunderstorms. Under the right conditions, they say, the field becomes strong enough that it drives an upward avalanche of electrons. Reaching speeds nearly as fast as light, the high-energy electrons give off gamma rays when they're deflected by air molecules. Normally, these gamma rays are detected as a TGF.

But the cascading electrons produce so many gamma rays that they blast electrons and positrons clear out of the atmosphere. This happens when the gamma-ray energy transforms into a pair of particles: an electron and a positron. It's these particles that reach Fermi's orbit.

The detection of positrons shows many high-energy particles are being ejected from the atmosphere. In fact, scientists now think that all TGFs emit electron/positron beams. A paper on the findings has been accepted for publication in Geophysical Research Letters.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. It is managed by NASA's Goddard Space Flight Center in Greenbelt, Md. It was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "NASA's Fermi catches thunderstorms hurling antimatter into space." ScienceDaily. ScienceDaily, 11 January 2011. <www.sciencedaily.com/releases/2011/01/110111132721.htm>.
NASA/Goddard Space Flight Center. (2011, January 11). NASA's Fermi catches thunderstorms hurling antimatter into space. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2011/01/110111132721.htm
NASA/Goddard Space Flight Center. "NASA's Fermi catches thunderstorms hurling antimatter into space." ScienceDaily. www.sciencedaily.com/releases/2011/01/110111132721.htm (accessed September 18, 2014).

Share This



More Space & Time News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA Picks Boeing and SpaceX to Ferry Astronauts

NASA Picks Boeing and SpaceX to Ferry Astronauts

AP (Sep. 16, 2014) — NASA is a giant step closer to launching Americans again from U.S. soil. It has announced it has picked Boeing and SpaceX to transport astronauts to the International Space Station in the next few years. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins