Featured Research

from universities, journals, and other organizations

New device may revolutionize computer memory

Date:
January 22, 2011
Source:
North Carolina State University
Summary:
Researchers have developed a new device that represents a significant advance for computer memory, making large-scale "server farms" more energy efficient and allowing computers to start more quickly.

Researchers have developed a single “unified” device that can perform both volatile and nonvolatile memory operation, with applications that could affect computer start times and energy efficiency for internet servers.
Credit: Image courtesy of North Carolina State University

Researchers from North Carolina State University have developed a new device that represents a significant advance for computer memory, making large-scale "server farms" more energy efficient and allowing computers to start more quickly.

Traditionally, there are two types of computer memory devices. Slow memory devices are used in persistent data storage technologies such as flash drives. They allow us to save information for extended periods of time, and are therefore called nonvolatile devices. Fast memory devices allow our computers to operate quickly, but aren't able to save data when the computers are turned off. The necessity for a constant source of power makes them volatile devices.

But now a research team from NC State has developed a single "unified" device that can perform both volatile and nonvolatile memory operation and may be used in the main memory.

"We've invented a new device that may revolutionize computer memory," says Dr. Paul Franzon, a professor of electrical and computer engineering at NC State and co-author of a paper describing the research. "Our device is called a double floating-gate field effect transistor (FET). Existing nonvolatile memory used in data storage devices utilizes a single floating gate, which stores charge in the floating gate to signify a 1 or 0 in the device -- or one 'bit' of information. By using two floating gates, the device can store a bit in a nonvolatile mode, and/or it can store a bit in a fast, volatile mode -- like the normal main memory on your computer."

The double floating-gate FET could have a significant impact on a number of computer problems. For example, it would allow computers to start immediately, because the computer wouldn't have to retrieve start-up data from its hard drive -- the data could be stored in its main memory.

The new device would also allow "power proportional computing." For example, Web server farms, such as those used by Google, consume an enormous amount of power -- even when there are low levels of user activity -- in part because the server farms can't turn off the power without affecting their main memory.

"The double floating-gate FET would help solve this problem," Franzon says, "because data could be stored quickly in nonvolatile memory -- and retrieved just as quickly. This would allow portions of the server memory to be turned off during periods of low use without affecting performance."

Franzon also notes that the research team has investigated questions about this technology's reliability, and that they think the device "can have a very long lifetime, when it comes to storing data in the volatile mode."

The paper, "Computing with Novel Floating-Gate Devices," will be published Feb. 10 in IEEE's Computer. The paper was authored by Franzon; former NC State Ph.D. student Daniel Schinke; former NC State master's student Mihir Shiveshwarkar; and Dr. Neil Di Spigna, a research assistant professor at NC State. The research was funded by the National Science Foundation.

NC State's Department of Electrical and Computer Engineering is part of the university's College of Engineering.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Schinke, Neil Di Spigna, Mihir Shiveshwarkar, Paul Franzon. Computing with Novel Floating Gate Devices. Computer, 2010; DOI: 10.1109/MC.2010.366

Cite This Page:

North Carolina State University. "New device may revolutionize computer memory." ScienceDaily. ScienceDaily, 22 January 2011. <www.sciencedaily.com/releases/2011/01/110120111025.htm>.
North Carolina State University. (2011, January 22). New device may revolutionize computer memory. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2011/01/110120111025.htm
North Carolina State University. "New device may revolutionize computer memory." ScienceDaily. www.sciencedaily.com/releases/2011/01/110120111025.htm (accessed August 1, 2014).

Share This




More Computers & Math News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services


Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins