Featured Research

from universities, journals, and other organizations

Voiding defects: New technique makes LED lighting more efficient

Date:
January 25, 2011
Source:
North Carolina State University
Summary:
Light-emitting diodes (LEDs) are an increasingly popular technology for use in energy-efficient lighting. Researchers have now developed a new technique that reduces defects in the gallium nitride (GaN) films used to create LEDs, making them more efficient.

The new technique reduces the number of defects in those films by two to three orders of magnitude -- increasing the output of light by a factor of two for a given amount of power.
Credit: Image courtesy of Lukasz Tylec

Light-emitting diodes (LEDs) are an increasingly popular technology for use in energy-efficient lighting. Researchers from North Carolina State University have now developed a new technique that reduces defects in the gallium nitride (GaN) films used to create LEDs, making them more efficient.

LED lighting relies on GaN thin films to create the diode structure that produces light. The new technique reduces the number of defects in those films by two to three orders of magnitude. "This improves the quality of the material that emits light," says Dr. Salah Bedair, a professor of electrical and computer engineering at NC State and co-author, with NC State materials science professor Nadia El-Masry, of a paper describing the research. "So, for a given input of electrical power, the output of light can be increased by a factor of two - which is very big." This is particularly true for low electrical power input and for LEDs emitting in the ultraviolet range.

The researchers started with a GaN film that was two microns, or two millionths of a meter, thick and embedded half of that thickness with large voids - empty spaces that were one to two microns long and 0.25 microns in diameter. The researchers found that defects in the film were drawn to the voids and became trapped - leaving the portions of the film above the voids with far fewer defects.

Defects are slight dislocations in the crystalline structure of the GaN films. These dislocations run through the material until they reach the surface. By placing voids in the film, the researchers effectively placed a "surface" in the middle of the material, preventing the defects from traveling through the rest of the film.

The voids make an impressive difference.

"Without voids, the GaN films have approximately 10[to the 10th power] defects per square centimeter," Bedair says. "With the voids, they have 10[to the 7th power] defects. This technique would add an extra step to the manufacturing process for LEDs, but it would result in higher quality, more efficient LEDs."

The paper, "Embedded voids approach for low defect density in epitaxial GaN films," was published online Jan. 17 by Applied Physics Letters. The paper was co-authored by Bedair; Pavel Frajtag, a Ph.D. student at NC State; Dr. Nadia El-Masry, a professor of material science and engineering at NC State; and Dr. N. Nepal, a former post-doctoral researcher at NC State now working at the Naval Research Laboratory. The research was funded by the U.S. Army Research Office.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Frajtag, N. A. El-Masry, N. Nepal, S. M. Bedair. Embedded voids approach for low defect density in epitaxial GaN films. Applied Physics Letters, 2011; 98 (2): 023115 DOI: 10.1063/1.3540680

Cite This Page:

North Carolina State University. "Voiding defects: New technique makes LED lighting more efficient." ScienceDaily. ScienceDaily, 25 January 2011. <www.sciencedaily.com/releases/2011/01/110125123237.htm>.
North Carolina State University. (2011, January 25). Voiding defects: New technique makes LED lighting more efficient. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/01/110125123237.htm
North Carolina State University. "Voiding defects: New technique makes LED lighting more efficient." ScienceDaily. www.sciencedaily.com/releases/2011/01/110125123237.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins