Featured Research

from universities, journals, and other organizations

Key mechanism governing nicotine addiction discovered

Date:
January 31, 2011
Source:
Scripps Research Institute
Summary:
Scientists have identified a pathway in the brain that regulates an individual's vulnerability to the addictive properties of nicotine. The findings suggest a new target for anti-smoking therapies.

Scientists from the Florida campus of The Scripps Research Institute have identified a pathway in the brain that regulates an individual's vulnerability to the addictive properties of nicotine. The findings suggest a new target for anti-smoking therapies.

The study appeared January 30, 2011, in an advance, online issue of the journal Nature.

In the study, the scientists examined the effects of a part of a receptor (a protein molecule to which specific signaling molecules attach) that responds to nicotine in the brain. The scientists found that animal models with a genetic mutation inhibiting this receptor subunit consumed far more nicotine than normal. This effect could be reversed by boosting the subunit's expression.

"We believe that these new data establish a new framework for understanding the motivational drives in nicotine consumption and also the brain pathways that regulate vulnerability to tobacco addiction," said Scripps Research Associate Professor Paul Kenny, who led the study. "These findings also point to a promising target for the development of potential anti-smoking therapies."

Specifically, the new study focused on the nicotinic receptor subunit α5, in a discrete pathway of the brain called the habenulo-interpeduncular tract. The new findings suggest that nicotine activates nicotinic receptors containing this subunit in the habenula, triggering a response that acts to dampen the urge to consume more of the drug.

"It was unexpected that the habenula, and brain structures into which it projects, play such a profound role in controlling the desire to consume nicotine," said Christie Fowler, the first author of the study and research associate in the Kenny laboratory. "The habenula appears to be activated by nicotine when consumption of the drug has reached an adverse level. But if the pathway isn't functioning properly, you simply take more. Our data may explain recent human data showing that individuals with genetic variation in the α5 nicotinic receptor subunit are far more vulnerable to the addictive properties of nicotine, and far more likely to develop smoking-associated diseases such as lung cancer and chronic obstructive pulmonary disease."

A Previously Unknown Pathway Inhibits Motivation

Tobacco smoking is one of the leading causes of death worldwide, with more than five million people dying each year as a result of it, according to statistics cited in the study. Smoking is considered the cause of more than 90 percent of lung cancer deaths. Scientists have established that a tendency towards smoking can be inherited -- more than 60 percent of the risk of becoming addicted to nicotine can be laid at the door of genetic factors.

Nicotine is the major addictive component of tobacco smoke, and nicotine acts in the brain by stimulating proteins called nicotinic acetylcholine receptors (nAChRs). These nAChRs are made up of different types of subunits, one of which is the α5 subunit -- the focus of the new study.

In their experiments, the Scripps Research scientists set out to determine the role of nAChRs-containing α5 subunits (α5* nAChRs) in regulating nicotine consumption.

First, the team assessed the addictive properties of nicotine in genetically altered mice lacking α5* nAChRs. The results showed that when these "knockout" mice were given access to high doses of nicotine, they consumed much larger quantities than normal mice. Next, to determine if the subunit was responsible for the sudden shift in appetite for nicotine, the scientists used a virus that "rescued" the expression of α5* nAChRs only in the medial habenula and areas of the brain into which it projects. The results showed the nicotine consumption patterns of the knockout mice returned to a normal range.

The scientists repeated the experiments with rats and produced similar results. In this case, the scientists used a virus to "knock out" α5 nAChR subunits in the medial habenula. When the α5* nAChRs were decreased, the animals were more aggressive in seeking higher doses of nicotine. When the subunit remained unaltered, the animals showed more restraint.

The scientists then worked out the biochemical mechanisms through which α5* nAChRs operate in the medial habenula to control the addictive properties of nicotine. They found that α5* nAChRs regulate just how responsive the habenula is to nicotine, and that the habenula is involved in some of the negative responses to nicotine consumption. So when α5* nAChRs do not function properly, the habenula is less responsive to nicotine and much more of the drug can be consumed without negative feedback from the brain.

The scientists are optimistic that their findings may one day lead to help for smokers who want to kick the habit. Based on the new findings, the Scripps Florida scientists have started a new program of research in collaboration with scientists at the University of Pennsylvania to develop new drugs to boost α5* nAChR signaling and decrease the addictive properties of nicotine.

In addition to Kenny and Fowler, authors of the paper, "Habenular α5* Nicotinic Receptor Signaling Regulates Nicotine Intake," include Qun Lu and Paul M. Johnson of Scripps Research and Michael J. Marks of the University of Colorado, Boulder.

The study was funded by the National Institutes of Health and The James and Esther King Biomedical Research Program, Florida Department of Health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christie D. Fowler, Qun Lu, Paul M. Johnson, Michael J. Marks, Paul J. Kenny. Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature, 2011; DOI: 10.1038/nature09797

Cite This Page:

Scripps Research Institute. "Key mechanism governing nicotine addiction discovered." ScienceDaily. ScienceDaily, 31 January 2011. <www.sciencedaily.com/releases/2011/01/110130194139.htm>.
Scripps Research Institute. (2011, January 31). Key mechanism governing nicotine addiction discovered. ScienceDaily. Retrieved July 27, 2014 from www.sciencedaily.com/releases/2011/01/110130194139.htm
Scripps Research Institute. "Key mechanism governing nicotine addiction discovered." ScienceDaily. www.sciencedaily.com/releases/2011/01/110130194139.htm (accessed July 27, 2014).

Share This




More Mind & Brain News

Sunday, July 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins