Featured Research

from universities, journals, and other organizations

Engineers predict how fire spreads in warehouses

Date:
February 7, 2011
Source:
University of California - San Diego
Summary:
Engineers have made a breakthrough discovery that could help ease these situations by predicting where and how quickly initial fires spread in warehouses.

UC San Diego engineers are studying how cardboard boxes burn in an effort to help predict how warehouse fires spread and to prevent severe damage and loss of lives.
Credit: UC San Diego

Imagine this: Firefighters enter a several football field-sized, 60-foot high, pitch-black warehouse and they can't see inside -- they don't know if there is an inferno or a small fire with a lot of smoke. It's a very dangerous situation, making choices hard. Engineers at UC San Diego have made a breakthrough discovery that could help ease these situations by predicting where and how quickly initial fires spread in warehouses.

Results of this research were recently published in the journal Combustion and Flame.

Despite many years of research, including the development of analytical and numerical models and extensive experimentation, the complexity of the process of upward flame spread continues to confound the fire-research community.

"Warehouse fires are definitely a big problem," said Michael Gollner, co-author of the paper and a UC San Diego mechanical and aerospace engineering Ph.D. student. "It has been recently found that fully protected warehouses have burned down and that the sprinkler systems can't always control the fires. We still don't understand all the intricacies of this problem."

In their research, Gollner and his team are focusing on the most commonly used packaging material in warehouses -- corrugated cardboard -- which has been found to affect predictions of upward flame spread by current descriptions. As part of the study of the combustion of boxes of commodities, rates of upward flame spread during early-stage burning were observed during experiments on wide samples of corrugated cardboard. The research stems from previous experiments Gollner performed focused on the burning of cardboard in collaboration with Ali Rangwala, a professor in the Department of Fire Protection Engineering at the Worcester Polytechnic Institute and a UC San Diego graduate.

"The flame didn't spread exactly as was assumed so we did some further analysis on how the flame spread on a small scale," Gollner said. "What we found is that the cardboard, while in the past was assumed to be a solid material, is actually not. There are different layers, and when it burns some of the cardboard actually peels up, so it slows the rate at which fire spreads. This is very important when you are determining how long it takes a fire to reach a sprinkler and trigger a water spray. At the initial phase, that's when you can actually extinguish a fire most easily. Calculating the sprinkler activation times is really important in designing a warehouse protection system."

Forman Williams, a UC San Diego mechanical and aerospace engineering professor and co-author of the paper, said the ultimate objective of this research is to help create better classifications of fire hazards in storing commodities and materials in warehouses.

"The density and the number of sprinklers they use in a warehouse and the flow rates of sprinklers are determined by the classifications and categories of the packaging material. So we are trying to help determine what the criteria should be," Williams said.

The engineers' warehouse fire research, Gollner said, is appealing to the insurance industry and the national regulatory industry, including the National Fire Protection Association, all of which have a big priority in making sure warehouses are safe.

"One of the biggest concerns is that these systems are designed for firefighter response; they are not made to put themselves out," Gollner explained. "They are made to contain themselves until firefighters can enter. …Hopefully this will help become a part of new commodity classification standards in the future and in the way warehouses are designed. We hope to allow them to design warehouses safer not only to protect the goods in these warehouses but also the people who work in them and the firefighters who have to respond."

Next on the researchers' agenda is to conduct follow-on experiments looking at how fire spreads on surfaces at different angles, a project currently sponsored by the Society of Fire Protection Engineers, Educational and Scientific Foundation.

"We would like to understand better what controls the fire spread in different situations," Williams said. "There are lots of things we really don't understand, although fire has been around for a very long time."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. M.J. Gollner, F.A. Williams, A.S. Rangwala. Upward flame spread over corrugated cardboard. Combustion and Flame, 2011; DOI: 10.1016/j.combustflame.2010.12.005

Cite This Page:

University of California - San Diego. "Engineers predict how fire spreads in warehouses." ScienceDaily. ScienceDaily, 7 February 2011. <www.sciencedaily.com/releases/2011/02/110202172309.htm>.
University of California - San Diego. (2011, February 7). Engineers predict how fire spreads in warehouses. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/02/110202172309.htm
University of California - San Diego. "Engineers predict how fire spreads in warehouses." ScienceDaily. www.sciencedaily.com/releases/2011/02/110202172309.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins