Featured Research

from universities, journals, and other organizations

New images show cloud exploding from Sun ripples like clouds on Earth

Date:
February 4, 2011
Source:
University of Warwick
Summary:
Physicists studying new images of clouds of material exploding from the Sun have spotted instabilities forming in that exploding cloud that are similar to those seen in clouds in Earth's atmosphere.

Image of the new CME studied by Dr Claire Foullon with box around area showing visual evidence of KH instabilities.
Credit: Atmospheric Imaging Assembly (AIA) experiment on NASA’s Solar Dynamics Observatory (SDO)

Physicists, led by a researcher at the University of Warwick, studying new images of clouds of material exploding from the Sun have spotted instabilities forming in that exploding cloud that are similar to those seen in clouds in Earth's atmosphere.

Related Articles


These results could greatly assist physicists trying to understand and predict our Solar System's "weather."

The researchers, led by Dr Claire Foullon of the Centre for Fusion Space and Astrophysics, at the University of Warwick's Department of Physics, made their discovery when examining new images of clouds of material exploding from the Sun known as coronal mass ejections (CMEs). These images were provided by the Atmospheric Imaging Assembly (AIA) experiment on NASA's Solar Dynamics Observatory (SDO). SDO was been launched last year and provides unprecedented views of the Sun in multiple temperatures.

The new SDO/AIA observations provided images of coronal mass ejections in the extreme ultra violet at a temperature that was not possible to observe in previous instruments -- 11 million Kelvin. On examining these images the Warwick researchers spotted a familiar pattern of instability on one flank of an exploding cloud of solar material that closely paralleled instabilities seen in Earth's clouds and waves on the surfaces of seas.

When observed these Kelvin-Helmholtz (or KH) instabilities appear to roll up into growing whirls at boundaries between things moving at different speeds, for instance the transition between air and water or cloud. The difference in speeds produces the boundary instabilities.

Similar conditions can occur when one looks at the magnetic environment of the path of these coronal mass ejections as they travel through the solar corona. The difference in speed and energies between the two creates the very similar KH instabilities that we can observe in clouds.

While KH instabilities have been predicted or inferred from observations as happening within the solar system's weather this is the very first time they have been directly observed in the corona. What makes this observation even more interesting is that the instabilities appear to form and build on one flank of the CME. This may explain why CMEs appear to bend and twist as these instabilities build, and cause drag, on one side of the cloud. This effect will be the next focus for the University of Warwick led research team.

University of Warwick researcher Dr Claire Foullon said: "The fact that we now know that these KH instabilities in CMEs are so far only observable in the extreme ultra violet , at a temperature of 11 million Kelvin, will also help us in modelling CME behaviour"

"This new observation may give us a novel insight into why these CMEs appear to both rotate, and be deflected away from following a simple straight path from the surface of the Sun. If the instabilities form on just one flank they will may increase drag one side of the CME causing it to move slower than the rest of the CME."

Dr Foullon and her co-researchers have outlined their observations and detailed modelling of how they believe this phenomenon occurs in a paper just published in Astrophysical Journal Letters entitled Magnetic Kelvin-Helmholtz Instability at the Sun by Dr Claire Foullon, Erwin Verwichte, Valery M. Nakariakov Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick; Katariina Nykyri, Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida; and Charles J. Farrugia, Space Science Center and Department of Physics, University of New Hampshire, Durham, New Hampshire


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claire Foullon, Erwin Verwichte, Valery M. Nakariakov, Katariina Nykyri, Charles J. Farrugia. Magnetic Kelvin-Helmholtz Instability at the Sun. The Astrophysical Journal, 2011; 729 (1): L8 DOI: 10.1088/2041-8205/729/1/L8

Cite This Page:

University of Warwick. "New images show cloud exploding from Sun ripples like clouds on Earth." ScienceDaily. ScienceDaily, 4 February 2011. <www.sciencedaily.com/releases/2011/02/110204091247.htm>.
University of Warwick. (2011, February 4). New images show cloud exploding from Sun ripples like clouds on Earth. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2011/02/110204091247.htm
University of Warwick. "New images show cloud exploding from Sun ripples like clouds on Earth." ScienceDaily. www.sciencedaily.com/releases/2011/02/110204091247.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Space & Time News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com
Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Newsy (Jan. 23, 2015) The first images of the European Space Agency&apos;s Rosetta probe comet orbit could provide clues about its origin and how it got its unique shape. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins