Featured Research

from universities, journals, and other organizations

New images show cloud exploding from Sun ripples like clouds on Earth

Date:
February 4, 2011
Source:
University of Warwick
Summary:
Physicists studying new images of clouds of material exploding from the Sun have spotted instabilities forming in that exploding cloud that are similar to those seen in clouds in Earth's atmosphere.

Image of the new CME studied by Dr Claire Foullon with box around area showing visual evidence of KH instabilities.
Credit: Atmospheric Imaging Assembly (AIA) experiment on NASA’s Solar Dynamics Observatory (SDO)

Physicists, led by a researcher at the University of Warwick, studying new images of clouds of material exploding from the Sun have spotted instabilities forming in that exploding cloud that are similar to those seen in clouds in Earth's atmosphere.

These results could greatly assist physicists trying to understand and predict our Solar System's "weather."

The researchers, led by Dr Claire Foullon of the Centre for Fusion Space and Astrophysics, at the University of Warwick's Department of Physics, made their discovery when examining new images of clouds of material exploding from the Sun known as coronal mass ejections (CMEs). These images were provided by the Atmospheric Imaging Assembly (AIA) experiment on NASA's Solar Dynamics Observatory (SDO). SDO was been launched last year and provides unprecedented views of the Sun in multiple temperatures.

The new SDO/AIA observations provided images of coronal mass ejections in the extreme ultra violet at a temperature that was not possible to observe in previous instruments -- 11 million Kelvin. On examining these images the Warwick researchers spotted a familiar pattern of instability on one flank of an exploding cloud of solar material that closely paralleled instabilities seen in Earth's clouds and waves on the surfaces of seas.

When observed these Kelvin-Helmholtz (or KH) instabilities appear to roll up into growing whirls at boundaries between things moving at different speeds, for instance the transition between air and water or cloud. The difference in speeds produces the boundary instabilities.

Similar conditions can occur when one looks at the magnetic environment of the path of these coronal mass ejections as they travel through the solar corona. The difference in speed and energies between the two creates the very similar KH instabilities that we can observe in clouds.

While KH instabilities have been predicted or inferred from observations as happening within the solar system's weather this is the very first time they have been directly observed in the corona. What makes this observation even more interesting is that the instabilities appear to form and build on one flank of the CME. This may explain why CMEs appear to bend and twist as these instabilities build, and cause drag, on one side of the cloud. This effect will be the next focus for the University of Warwick led research team.

University of Warwick researcher Dr Claire Foullon said: "The fact that we now know that these KH instabilities in CMEs are so far only observable in the extreme ultra violet , at a temperature of 11 million Kelvin, will also help us in modelling CME behaviour"

"This new observation may give us a novel insight into why these CMEs appear to both rotate, and be deflected away from following a simple straight path from the surface of the Sun. If the instabilities form on just one flank they will may increase drag one side of the CME causing it to move slower than the rest of the CME."

Dr Foullon and her co-researchers have outlined their observations and detailed modelling of how they believe this phenomenon occurs in a paper just published in Astrophysical Journal Letters entitled Magnetic Kelvin-Helmholtz Instability at the Sun by Dr Claire Foullon, Erwin Verwichte, Valery M. Nakariakov Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick; Katariina Nykyri, Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida; and Charles J. Farrugia, Space Science Center and Department of Physics, University of New Hampshire, Durham, New Hampshire


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claire Foullon, Erwin Verwichte, Valery M. Nakariakov, Katariina Nykyri, Charles J. Farrugia. Magnetic Kelvin-Helmholtz Instability at the Sun. The Astrophysical Journal, 2011; 729 (1): L8 DOI: 10.1088/2041-8205/729/1/L8

Cite This Page:

University of Warwick. "New images show cloud exploding from Sun ripples like clouds on Earth." ScienceDaily. ScienceDaily, 4 February 2011. <www.sciencedaily.com/releases/2011/02/110204091247.htm>.
University of Warwick. (2011, February 4). New images show cloud exploding from Sun ripples like clouds on Earth. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2011/02/110204091247.htm
University of Warwick. "New images show cloud exploding from Sun ripples like clouds on Earth." ScienceDaily. www.sciencedaily.com/releases/2011/02/110204091247.htm (accessed October 1, 2014).

Share This



More Space & Time News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) — Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins