Featured Research

from universities, journals, and other organizations

Expanding drug development horizons: Receptor behaviors observed in living cell membranes

Date:
February 7, 2011
Source:
Institute for Integrated Cell-Material Sciences, Kyoto University
Summary:
Unprecedented single molecule imaging movies of living cell membranes have clarified a decades-old enigma surrounding receptor molecule behaviors. The results promise to open the door to new possibilities for drug development.

Unprecedented single molecule imaging movies of living cell membranes, taken by a research team based at Kyoto University and the University of New Mexico, have clarified a decades-old enigma surrounding receptor molecule behaviors. The results, appearing in the latest issue of the Journal of Cell Biology, promise to open the door to new possibilities for drug development.

Related Articles


The work focuses on G protein-coupled receptors (GPCRs), a class of molecules in cell membranes that comprise the largest superfamily in the human genome. In spite of being the focus of roughly half of modern drug development due to their key role in signaling across the membrane, until now it has not been well understood how GPCRs relay signals from the outside world into cells' interiors.

For over 15 years, debate regarding GPCRs' signaling mechanisms has centered on whether these molecules work alone (as monomers) or in pairs (dimers). Using formyl-peptide receptors (FPRs) as a model GPCR, the research team found that the two views are both partially correct.

"By developing a super-quantitation single-molecule imaging method, in which GPCR molecules are inspected one by one in living cell membranes," explained Rinshi Kasai of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) and lead author of the paper, "we are now able to actually 'see' that each individual FPR molecule moves around in the cell membrane, endlessly interconverting between monomers and dimers with different partners, completing each cycle within a quarter of a second."

According to iCeMS Professor Akihiro Kusumi, "We obtained a parameter called the dissociation constant, which will allow us to predict numbers of monomers and dimers if the total number of GPCRs in a cell is known. The ability of scientists to obtain such key numbers will be essential for understanding GPCR signaling, as well as defects leading to diseases from the neuronal to the immune systems. The implications for drug design, blocking signal amplification by monomer-dimer interconversion, are profoundly important."

The research team, funded in part by the Japan Science and Technology Agency (JST) and the Japanese education ministry MEXT, anticipates that their findings will have a broad impact on the further study of signal transduction in the cell membrane and conceptual and methodological development for drug discovery.


Story Source:

The above story is based on materials provided by Institute for Integrated Cell-Material Sciences, Kyoto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rinshi S. Kasai, Kenichi G. N. Suzuki, Eric R. Prossnitz, Ikuko Koyama-Honda, Chieko Nakada, Takahiro K. Fujiwara, and Akihiro Kusumi. Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. Journal of Cell Biology, 2011

Cite This Page:

Institute for Integrated Cell-Material Sciences, Kyoto University. "Expanding drug development horizons: Receptor behaviors observed in living cell membranes." ScienceDaily. ScienceDaily, 7 February 2011. <www.sciencedaily.com/releases/2011/02/110207091752.htm>.
Institute for Integrated Cell-Material Sciences, Kyoto University. (2011, February 7). Expanding drug development horizons: Receptor behaviors observed in living cell membranes. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/02/110207091752.htm
Institute for Integrated Cell-Material Sciences, Kyoto University. "Expanding drug development horizons: Receptor behaviors observed in living cell membranes." ScienceDaily. www.sciencedaily.com/releases/2011/02/110207091752.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com
Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Despite Rising Death Toll, Many Survive Ebola

Despite Rising Death Toll, Many Survive Ebola

AP (Oct. 23, 2014) The family of a Dallas nurse infected with Ebola in the US says doctors can no longer detect the virus in her. Despite the mounting death toll in West Africa, there are survivors there too. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins