Featured Research

from universities, journals, and other organizations

New techniques for stapling peptides could spur development of drugs for cancer

Date:
February 9, 2011
Source:
University at Buffalo
Summary:
Researchers have devised two new ways of "stapling" peptide helices to prevent these medically important molecules from losing their shape and degrading in the presence of enzymes.

Researchers at the University at Buffalo have devised two new ways of "stapling" peptide helices to prevent these medically important molecules from losing their shape and degrading in the presence of enzymes.

Related Articles


The discovery could help speed the development of peptide-based drugs against diseases including cancer. UB scientists say the methods they pioneered are simpler than existing techniques, one of which employs an expensive ruthenium catalyst to connect chemical side chains that protrude from the main body of helical peptides.

"There's a lot of potential here. Our chemistry is unique," said Qing Lin, the UB assistant professor of chemistry who led the research. "There are not that many new drug targets out there today, which partly explains the declining number of FDA-approved new drugs in recent years. So there's a need to come up with new technologies that can overcome this barrier. To this end, stapled peptides could open a whole host of new targets for therapies."

Stapled peptides work as treatments against disease by binding tightly to target proteins within cells, thus disrupting specific protein-protein interactions that regulate many biological processes, including response to stress, signaling within cells, and cell death.

In their native state, peptides -- short strings of amino acids -- shift between different shapes, including a helix, sheet and random coil. Stapling the peptides' side chains encourages the peptides to adopt and stay in a helix, which enables them to enter cells more easily. The helical conformation also makes it more difficult for enzymes to break the peptides down, Lin said.

The two processes Lin's team developed for stapling peptides are efficient, producing stapled peptides in high yields, said Timothy Dee, a commercialization manager for UB's Office of Science, Technology Transfer and Economic Outreach (STOR). Through STOR, UB is applying for patents to cover both stapling methods.

"Photoclick stapling," the first approach, involves synthesizing peptides that have alkenes in one side chain and tetrazoles in another. Under ultraviolet light, the two side chains form chemical bonds with one another.

A paper on photoclick stapling appeared online in Bioorganic and Medicinal Chemistry Letters in January and will appear later this year in the journal's print edition. Researchers first published on the subject in 2009 in Chemical Communications.

The second stapling technique Lin and his colleagues devised requires the synthesis of peptides carrying a pair of amino acids called cysteines that contain sulfur in their side chains. When scientists expose these peptides to a chemical that reacts selectively with the sulfur atoms, the chemical forms a "staple" that connects the two cysteine side chains.

Experts believe stapled peptides could treat a wide variety of health problems, including cancer and inflammatory, metabolic and infectious diseases. As evidence of the technology's promise, a company formed in 2005 to commercialize a ruthenium-based stapling method developed at Harvard University has reportedly raised about $60 million in venture capital and landed a deal with pharmaceutical giant Roche that could be worth more than $1 billion over time.

"The field is large enough for multiple players," Lin said. "Stapling is a technology that many people believe will create a new class of drug therapies, hitting new targets that other therapies can't. Our chemistry is distinct from what's already out there."

Lin and his group are particularly interested in developing anti-cancer therapeutics that increase the efficacy of chemotherapy by instructing cancer cells to self-destruct through "programmed cell death," a process called apoptosis.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University at Buffalo. "New techniques for stapling peptides could spur development of drugs for cancer." ScienceDaily. ScienceDaily, 9 February 2011. <www.sciencedaily.com/releases/2011/02/110208164025.htm>.
University at Buffalo. (2011, February 9). New techniques for stapling peptides could spur development of drugs for cancer. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/02/110208164025.htm
University at Buffalo. "New techniques for stapling peptides could spur development of drugs for cancer." ScienceDaily. www.sciencedaily.com/releases/2011/02/110208164025.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins