Featured Research

from universities, journals, and other organizations

Nanoparticles may enhance circulating tumor cell detection

Date:
February 12, 2011
Source:
Emory University
Summary:
Tiny gold particles can help doctors detect tumor cells circulating in the blood of patients with head and neck cancer, researchers have found.

Gold-based nanoparticles can detect circulating tumor cells.
Credit: Image courtesy of Emory University

Tiny gold particles can help doctors detect tumor cells circulating in the blood of patients with head and neck cancer, researchers at Emory and Georgia Tech have found.

Related Articles


The detection of circulating tumor cells (CTCs) is an emerging technique that can allow oncologists to monitor patients with cancer for metastasis or to evaluate the progress of their treatment. The gold particles, which are embedded with dyes allowing their detection by laser spectroscopy, could enhance this technique's specificity by reducing the number of false positives.

The results are published online in the journal Cancer Research.

One challenge with detecting CTCs is separating out signals from white blood cells, which are similarly sized as tumor cells and can stick to the same antibodies normally used to identify tumor cells. Commercially available devices trap CTCs using antibody-coated magnetic beads, and technicians must stain the trapped cells with several antibodies to avoid falsely identifying white blood cells as tumor cells.

Emory and Georgia Tech researchers show that polymer-coated and dye-studded gold particles, directly linked to a growth factor peptide rather than an antibody, can detect circulating tumor cells in the blood of patients with head and neck cancer.

"The key technological advance here is our finding that polymer-coated gold nanoparticles that are conjugated with low molecular weight peptides such as EGF are much less sticky than particles conjugated to whole antibodies," says Shuming Nie, PhD, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "This effect has led to a major improvement in discriminating tumor cells from non-tumor cells in the blood."

The particles are linked to EGF (epithelial growth factor), whose counterpart EGFR (epithelial growth factor receptor) is over-produced on the surfaces of several types of tumor cells.

Upon laser illumination, the particles display a sharp fingerprint-like pattern that is specific to the dye, because the gold enhances the signal coming from the dyes. This suggests that several types of nanoparticles could be combined to gain more information about the growth characteristics of the tumor cells. In addition, measuring CTC levels may be sensitive enough to distinguish patients with localized disease from those with metastatic disease.

"Nanoparticles could be instrumental in modifying the process so that circulating tumor cells can be detected without separating the tumor cells from normal blood cells," Nie says. "We've demonstrated that one tumor cell out of approximately one to ten million normal cells can be detected this way."

In collaboration with oncologists at Winship Cancer Institute, researchers used nanoparticles to test for CTCs in blood samples from 19 patients with head and neck cancer. Of these patients, 17 had positive signals for CTCs in their blood. The two with low signals were verified to have no circulating cells by a different technique.

"Although the results have not been compared or validated with current CTC detection methods, our 'one-tube' SERS technology could be faster and lower in costs than other detection methods," says Dong Moon Shin, MD, professor of hematology and oncology and otolaryngology, associate director of academic development for Winship Cancer Institute and director of the Winship Cancer Institute Chemoprevention Program. "We need to validate this pilot study by continuing with larger groups of patients and comparing with other tests."


Story Source:

The above story is based on materials provided by Emory University. The original article was written by Quinn Eastman. Note: Materials may be edited for content and length.


Journal Reference:

  1. X. Wang, X. Qian, J. J. Beitler, G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, D. M. Shin. Detection of Circulating Tumor Cells in Human Peripheral Blood using Surface-Enhanced Raman Scattering Nanoparticles. Cancer Research, 2011; DOI: 10.1158/0008-5472.CAN-10-3069

Cite This Page:

Emory University. "Nanoparticles may enhance circulating tumor cell detection." ScienceDaily. ScienceDaily, 12 February 2011. <www.sciencedaily.com/releases/2011/02/110211153925.htm>.
Emory University. (2011, February 12). Nanoparticles may enhance circulating tumor cell detection. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2011/02/110211153925.htm
Emory University. "Nanoparticles may enhance circulating tumor cell detection." ScienceDaily. www.sciencedaily.com/releases/2011/02/110211153925.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Feeling Young Might Mean A Longer Life Span

Feeling Young Might Mean A Longer Life Span

Newsy (Dec. 16, 2014) A study published in JAMA shows that people who feel younger than their chronological age might actually live longer than those who feel old. Video provided by Newsy
Powered by NewsLook.com
2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

Newsy (Dec. 16, 2014) Researchers found the bacteria Klebsiella pneumoniae Carbapenemase in the water where the 2016 Olympics is supposed to take place. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins