Featured Research

from universities, journals, and other organizations

Herschel measures dark matter for star-forming galaxies

Date:
February 17, 2011
Source:
NASA/Jet Propulsion Laboratory
Summary:
The Herschel Space Observatory has revealed how much dark matter it takes to form a new galaxy bursting with stars. The findings are a key step in understanding how dark matter, an invisible substance permeating our universe, contributed to the birth of massive galaxies in the early universe.

A region of the sky called the "Lockman Hole," located in the constellation of Ursa Major, is one of the areas surveyed in infrared light by the Herschel Space Observatory. All of the little dots in this picture are distant galaxies.
Credit: ESA/Herschel/SPIRE/HerMES

The Herschel Space Observatory has revealed how much dark matter it takes to form a new galaxy bursting with stars.

Related Articles


The findings are a key step in understanding how dark matter, an invisible substance permeating our universe, contributed to the birth of massive galaxies in the early universe.

"If you start with too little dark matter, then a developing galaxy would peter out," said astronomer Asantha Cooray of the University of California, Irvine. He is the principal investigator of new research appearing in the journal Nature, online on Feb. 16 and in the Feb. 24 print edition. "If you have too much, then gas doesn't cool efficiently to form one large galaxy, and you end up with lots of smaller galaxies. But if you have the just the right amount of dark matter, then a galaxy bursting with stars will pop out."

The right amount of dark matter turns out to be a mass equivalent to 300 billion of our suns.

Herschel launched into space in May 2009. The mission's large, 3.5-meter (11.5-foot) telescope detects longer-wavelength infrared light from a host of objects, ranging from asteroids and planets in our own solar system to faraway galaxies.

"This remarkable discovery shows that early galaxies go through periods of star formation much more vigorous than in our present-day Milky Way," said William Danchi, Herschel program scientist at NASA Headquarters in Washington. "It showcases the importance of infrared astronomy, enabling us to peer behind veils of interstellar dust to see stars in their infancy."

Cooray and colleagues used the telescope to measure infrared light from massive, star-forming galaxies located 10 to 11 billion light-years away. Astronomers think these and other galaxies formed inside clumps of dark matter, similar to chicks incubating in eggs.

Giant clumps of dark matter act like gravitational wells that collect the gas and dust needed for making galaxies. When a mixture of gas and dust falls into a well, it condenses and cools, allowing new stars to form. Eventually enough stars form, and a galaxy is born.

Herschel was able to uncover more about how this galaxy-making process works by mapping the infrared light from collections of very distant, massive star-forming galaxies. This pattern of light, called the cosmic infrared background, is like a web that spreads across the sky. Because Herschel can survey large areas quickly with high resolution, it was able to create the first detailed maps of the cosmic infrared background.

"It turns out that it's much more effective to look at these patterns rather than the individual galaxies," said Jamie Bock of NASA's Jet Propulsion Laboratory in Pasadena, Calif. Bock is the U.S. principal investigator for Herschel's Spectral and Photometric Imaging Receiver instrument used to make the maps. "This is like looking at a picture in a magazine from a reading distance. You don't notice the individual dots, but you see the big picture. Herschel gives us the big picture of these distant galaxies, showing the influence of dark matter."

The maps showed the galaxies are more clustered into groups than previously believed. The amount of galaxy clustering depends on the amount of dark matter. After a series of complicated numerical simulations, the astronomers were able to determine exactly how much dark matter is needed to form a single star-forming galaxy.

"This measurement is important, because we are homing in on the very basic ingredients in galaxy formation," said Alexandre Amblard of UC Irvine, first author of the Nature paper. "In this case, the ingredient, dark matter, happens to be an exotic substance that we still have much to learn about."

Herschel is a European Space Agency cornerstone mission supported with important NASA contributions. NASA's Herschel Project Office is based at JPL, which contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. JPL is managed by Caltech.

More information is online at http://www.herschel.caltech.edu, http://www.nasa.gov/herschel and http://www.esa.int/SPECIALS/Herschel/index.html .


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexandre Amblard, Asantha Cooray, Paolo Serra, B. Altieri, V. Arumugam, H. Aussel, A. Blain, J. Bock, A. Boselli, V. Buat, N. Castro-Rodríguez, A. Cava, P. Chanial, E. Chapin, D. L. Clements, A. Conley, L. Conversi, C. D. Dowell, E. Dwek, S. Eales, D. Elbaz, D. Farrah, A. Franceschini, W. Gear, J. Glenn, M. Griffin, M. Halpern, E. Hatziminaoglou, E. Ibar, K. Isaak, R. J. Ivison, A. A. Khostovan, G. Lagache, L. Levenson, N. Lu, S. Madden, B. Maffei, G. Mainetti, L. Marchetti, G. Marsden, K. Mitchell-Wynne, H. T. Nguyen, B. O’Halloran, S. J. Oliver, A. Omont, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, I. Pérez-Fournon, M. Pohlen, N. Rangwala, I. G. Roseboom, M. Rowan-Robinson, M. Sánchez Portal, B. Schulz, Douglas Scott, N. Seymour, D. L. Shupe, A. J. Smith, J. A. Stevens, M. Symeonidis, M. Trichas, K. Tugwell, M. Vaccari, E. Valiante, I. Valtchanov, J. D. Vieira, L. Vigroux, L. Wang, R. Ward, G. Wright, C. K. Xu, M. Zemcov. Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 1011 solar masses. Nature, 2011; DOI: 10.1038/nature09771

Cite This Page:

NASA/Jet Propulsion Laboratory. "Herschel measures dark matter for star-forming galaxies." ScienceDaily. ScienceDaily, 17 February 2011. <www.sciencedaily.com/releases/2011/02/110216133951.htm>.
NASA/Jet Propulsion Laboratory. (2011, February 17). Herschel measures dark matter for star-forming galaxies. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/02/110216133951.htm
NASA/Jet Propulsion Laboratory. "Herschel measures dark matter for star-forming galaxies." ScienceDaily. www.sciencedaily.com/releases/2011/02/110216133951.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) — Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) — More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins