Featured Research

from universities, journals, and other organizations

New generation of optical integrated devices for future quantum computers

Date:
March 1, 2011
Source:
University of Bristol
Summary:
Scientists have demonstrated the quantum operation of new components that will enable compact circuits for future photonic quantum computers.

This is a simulation of classical light propagating in a multimode interference device. The multimode propagation results in equal intensity in each of the four output waveguides.
Credit: Alberto Peruzzo

A research group led by scientists from the University of Bristol has demonstrated the quantum operation of new components that will enable compact circuits for future photonic quantum computers.

Related Articles


Quantum computers, holding the great promise of tremendous computational power for particular tasks, have been the goal of worldwide efforts by scientists for several years. Tremendous advances have been made but there is still a long way to go.

Building a quantum computer will require a large number of interconnected components -- gates -- which work in a similar way to the microprocessors in current personal computers. Currently, most quantum gates are large structures and the bulky nature of these devices prevents scalability to the large and complex circuits required for practical applications.

Recently, the researchers from the University of Bristol's Centre for Quantum Photonics showed, in several important breakthroughs, that quantum information can be manipulated with integrated photonic circuits. Such circuits are compact (enabling scalability) and stable (with low noise) and could lead in the near future to mass production of chips for quantum computers.

Now the team, in collaboration with Dr Terry Rudolph at Imperial College, London, shows a new class of integrated divides that promise further reduction in the number of components that will be used for building future quantum circuits.

These devices, based on optical multimode interference (and therefore often called MMIs) have been widely employed in classical optics as they are compact and very robust to fabrication tolerances. "While building a complex quantum network requires a large number of basic components, MMIs can often enable the implementation with much fewer resources," said Alberto Peruzzo, PhD student working on the experiment.

Until now it was not clear how these devices would work in the quantum regime. Bristol researchers have demonstrated that MMIs can perform quantum interference at the high fidelity required.

Scientists will now be able to implement more compact photonics circuits for quantum computing. MMIs can generate large entangled states, at the heart of the exponential speedup promised by quantum computing.

"Applications will range from new circuits for quantum computation to ultra precise measurement and secure quantum communication," said Professor Jeremy O'Brien, director of the Centre for Quantum Photonics.

The team now plans to build new sophisticated circuits for quantum computation and quantum metrology using MMI devices.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alberto Peruzzo, Anthony Laing, Alberto Politi, Terry Rudolph, Jeremy L. O'Brien. Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2, 224 DOI: 10.1038/ncomms1228

Cite This Page:

University of Bristol. "New generation of optical integrated devices for future quantum computers." ScienceDaily. ScienceDaily, 1 March 2011. <www.sciencedaily.com/releases/2011/03/110301122006.htm>.
University of Bristol. (2011, March 1). New generation of optical integrated devices for future quantum computers. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/03/110301122006.htm
University of Bristol. "New generation of optical integrated devices for future quantum computers." ScienceDaily. www.sciencedaily.com/releases/2011/03/110301122006.htm (accessed October 24, 2014).

Share This



More Computers & Math News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins