Featured Research

from universities, journals, and other organizations

New measurement into biological polymer networks

Date:
June 21, 2011
Source:
Air Force Office of Scientific Research
Summary:
The development of a new measurement technology is probing the structure of composite and biological materials. In their quest to understand more about bio-polymers, they developed the rheometer and confocal microscope system (measures the mechanical properties of materials), which provide a unique and unprecedented level of precision and sensitivity for investigating polymeric systems which were previously too small to visualize during mechanical stress experiments.

Confocal micrograph of an actin-filamin network.
Credit: Kurt Schmoller, Technical University of Munich

The development of a new measurement technology under a research project funded by the Air Force Office of Scientific Research and the National Science Foundation is probing the structure of composite and biological materials.

Related Articles


"Our results have provided some of the first microscopic insights into a sixty year old puzzle about the way polymeric networks react to repeated shear strains," said Dr. Daniel Blair, Assistant Professor, and principal investigator of the Soft Matter Group in the Department of Physics at Georgetown University.

Blair, Professor Andreas Bausch and other researchers at Technische Universtaet Muenchen (Technical University of Munich) used the muscle filament known as actin to construct a unique polymer network. In their quest to understand more about bio-polymers, they developed the rheometer and confocal microscope system (measures the mechanical properties of materials), which provide a unique and unprecedented level of precision and sensitivity for investigating polymeric systems which were previously too small to visualize during mechanical stress experiments. The rheometer and confocal microscopes clearly visualized the fluorescently labeled actin network and they filmed the polymer filaments' movement in 3-D when mechanical stress was applied.

The rheometer and confocal microscopes, will help to lay the groundwork for future generations of materials that will possibly be used to create synthesized muscle tissue for the Air Force. These materials may even be ideally suited for powering micro-robots. The rheometer and confocal microscopes enabled the scientists to see the shearing process during the Mullins Effect when biological polymers become dramatically softer as seen in conventional polymers. Moreover, these materials also demonstrate dramatic strengthening in a way that is very different compared to conventional polymeric solids. The researchers' next steps will be to use the Mullins Effect as a mechanical standard for understanding the properties of composite and biological networks.

"We will use confocal-rheology as a benchmark system for generating new collaborations and expanding the technique to other AFOSR sponsored projects," said Blair. "For example, in collaboration with Dr. Fritz Vollrath of the Oxford Silk Group and Dr. David Kaplan from Tufts University, we are investigating how shear stress influences the formation of silk fibers."

Blair noted that the new technology is impacting a number of other AFOSR supported projects as a platform for investigating the strengthening of nano-composite networks such as carbon nanotubes and cellulose nanofibers embedded in conventional materials.

Blair predicts that there will be possible private sector uses for the new technology in the area of the green revolution and its inherent smart, soft biological materials.


Story Source:

The above story is based on materials provided by Air Force Office of Scientific Research. Note: Materials may be edited for content and length.


Cite This Page:

Air Force Office of Scientific Research. "New measurement into biological polymer networks." ScienceDaily. ScienceDaily, 21 June 2011. <www.sciencedaily.com/releases/2011/03/110311122029.htm>.
Air Force Office of Scientific Research. (2011, June 21). New measurement into biological polymer networks. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2011/03/110311122029.htm
Air Force Office of Scientific Research. "New measurement into biological polymer networks." ScienceDaily. www.sciencedaily.com/releases/2011/03/110311122029.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins