Featured Research

from universities, journals, and other organizations

Telomerase inhibitor PinX1 is a key tumor suppressor, research shows

Date:
March 25, 2011
Source:
Beth Israel Deaconess Medical Center
Summary:
The discovery of a vitally important new function for this telomerase inhibitor suggests a novel option for treating cancers of the breast, lung, liver and GI system.

It's been nearly 10 years since Beth Israel Deaconess Medical Center (BIDMC) scientists Kun Ping Lu, MD, PhD and Xiao Zhen Zhou, MD, discovered PinX1, the first potent endogenous protein shown to inhibit telomerase in mammals.

Now the scientific team has discovered a vitally important new function for this telomerase inhibitor.

The investigators report in the Journal of Clinical Investigation (JCI) that low levels of PinX1 contribute to cancer development, providing the first genetic evidence linking telomerase activation to chromosome instability and cancer initiation, and suggesting a new avenue of treatment for cancers.

"Although telomerase is activated in 85 to 90 percent of human cancers, little has been known about the significance of telomerase activation in chromosome instability and cancer initiation," explains Lu, the paper's senior author and a Professor of Medicine at Harvard Medical School. "We have discovered, for the first time, a novel role for abnormal telomerase activation in cancer initiation. This suggests that telomerase inhibition using PinX1 or other small molecules may be used to treat certain cancers with activated telomerase."

Of particular note, the group's discovery that most PinX1-mutant mouse tumors share tissues of origin with human cancer types linked to genetic alterations in chromosome 8p23 suggests a possible role for deregulation of the PinX1-telomerase complex for the treatment of several common carcinomas, including breast, lung, liver and gastrointestinal cancers.

Telomeres cap the ends of linear chromosomes and are essential for maintaining chromosome stability. In the majority of human cells, telomeres are slightly shortened each time a cell divides, a process that, over time, leads to cell death. However, cancer cells have the unique ability to turn on telomerase, an enzyme that elongates telomeres, preventing them from growing shorter and enabling cancer cells to divide -- and survive -- indefinitely.

It has been well-recognized that telomerase activation is critical for most cancer cell growth. But, as Lu explains, to this point, there has been no genetic evidence that actually links telomerase activation to chromosomal instability, a defining characteristic of most malignant human tumors.

"A normal cell has 46 chromosomes," Lu explains. "The consequence of chromosomal instability is an imbalance in this number, which allows a cell to evade its normal regulatory mechanism and become a cancer cell. The gene encoding the telomerase inhibitor PinX1 is located at human chromosome 8p23, one of the most frequent regions showing genetic changes in common human malignancies. We, therefore, wanted to find out if PinX1 might have a hand in this."

To address this question, the scientists first looked at PinX1 expression in human breast cancer tissue and cells.

"We found that PinX1 expression was much lower than normal in these cells," explains Zhou, an Assistant Professor of Medicine at HMS and the paper's first author. "Only 10 percent of the tissue expressed PinX1 levels even close to normal, with the remaining 90 percent expressed much lower than PinX1."

To determine the consequence of this significant PinX1 reduction, the researchers next created cells and mouse models in which the PinX1 gene was partially or completely removed. They observed that while mice or cells completely lacking PinX1 could not survive, the deletion of just one copy of the PinX1 gene actually reduced PinX1 expression -- and activated telomerase activity in both mice and cells.

"Surprisingly, we found that the reduced PinX1 in cells not only caused telomerase activation, but also triggered chromosome instability, a phenotype that was fully prevented by inhibiting telomerase," explains Zhou. "More important, most of the PinX1 mutant mice spontaneously developed carcinomas." These mouse tumors, she adds, exhibited features commonly seen in advanced human carcinomas, including distant metastasis and shared tissues of origin with human cancer types linked to 8p23 alterations.

"This paper confirms the role of PinX1 as a potent telomerase inhibitor and demonstrates that low levels of PinX1 can contribute to cancer development by activating telomerase and inducing chromosomal instability," says Lewis Cantley, PhD, Director of the BIDMC Cancer Center. "These findings suggest that PinX1 might be a strong therapeutic candidate for one of the most sought-after tumor suppressors at chromosome 8p23."

The Lu and Zhou laboratories are currently testing the effectiveness of using PinX1 and other telomerase inhibitors to treat cancers that overexpress telomerase. "Going forward, we are also interested in determining the genetic changes that underlie PinX1 reduction in cancers," says Lu. "This might lead to new diagnostic tools to better identify individuals who are susceptible to certain cancers, and therefore, might be suitable for treatment with telomerase inhibitors."

This work was funded, in part, by grants from the National Institutes of Health and the Susan G. Komen for the Cure.

Study coauthors include BIDMC investigators Pengyu Huang, Rong Shi, Tae Ho Lee, Gina Lu, and Zhihong Zhang and Roderick Bronson of Harvard Medical School.


Story Source:

The above story is based on materials provided by Beth Israel Deaconess Medical Center. Note: Materials may be edited for content and length.


Journal References:

  1. Xiao Zhen Zhou, Pengyu Huang, Rong Shi, Tae Ho Lee, Gina Lu, Zhihong Zhang, Roderick Bronson, Kun Ping Lu. The telomerase inhibitor PinX1 is a major haploinsufficient tumor suppressor essential for chromosome stability in mice. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI43452
  2. F. Brad Johnson. PinX1 the tail on the chromosome. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI57024

Cite This Page:

Beth Israel Deaconess Medical Center. "Telomerase inhibitor PinX1 is a key tumor suppressor, research shows." ScienceDaily. ScienceDaily, 25 March 2011. <www.sciencedaily.com/releases/2011/03/110323135623.htm>.
Beth Israel Deaconess Medical Center. (2011, March 25). Telomerase inhibitor PinX1 is a key tumor suppressor, research shows. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/03/110323135623.htm
Beth Israel Deaconess Medical Center. "Telomerase inhibitor PinX1 is a key tumor suppressor, research shows." ScienceDaily. www.sciencedaily.com/releases/2011/03/110323135623.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Thousands Who Can't Afford Medical Care Flock to Free US Clinic

Thousands Who Can't Afford Medical Care Flock to Free US Clinic

AFP (July 23, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th. Thousands turned out for a free clinic run by "Remote Area Medical" with a visit from the Governor of Virginia. Duration: 2:40 Video provided by AFP
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins