Featured Research

from universities, journals, and other organizations

Neutron analysis yields insight into bacteria for solar energy

Date:
March 24, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
Structural studies of some of nature's most efficient light-harvesting systems are lighting the way for new generations of biologically inspired solar cell devices.

Chlorosomes (shown in green) capture and transfer light energy to the reaction center for photosynthesis in bacteria. New research from Oak Ridge National Laboratory reveals that the chlorosomes maintain their structure even under extreme conditions.
Credit: Image courtesy of DOE/Oak Ridge National Laboratory

Structural studies of some of nature's most efficient light-harvesting systems are lighting the way for new generations of biologically inspired solar cell devices.

Researchers from Washington University in St. Louis and the Department of Energy's Oak Ridge National Laboratory used small-angle neutron scattering to analyze the structure of chlorosomes in green photosynthetic bacteria. Chlorosomes are efficient at collecting sunlight for conversion to energy, even in low-light and extreme environments.

"It's one of the most efficient light harvesting antenna complexes found in nature," said co-author and research scientist Volker Urban of ORNL's Center for Structural Molecular Biology, or CSMB.

Neutron analysis performed at the CSMB's Bio-SANS instrument at the High Flux Isotope Reactor allowed the team to examine chlorosome structure under a range of thermal and ionic conditions.

"We found that their structure changed very little under all these conditions, which shows them to be very stable," Urban said. "This is important for potential biohybrid applications -- if you wanted to use them to harvest light in synthetic materials like a hybrid solar cell, for example."

The size, shape and organization of light-harvesting complexes such as chlorosomes are critical factors in electron transfer to semiconductor electrodes in solar devices. Understanding how chlorosomes function in nature could help scientists mimic the chlorosome's efficiency to create robust biohybrid or bio-inspired solar cells.

"What's so amazing about the chlorosome is that this large and complicated assembly is able to capture light effectively across a large area and then funnel the light to the reaction center without losing it along the way," Urban said. "Why this works so well in chlorosomes is not well understood at all."

"We're trying to find out general principles that are important for capturing, harvesting and transporting light efficiently and see how nature has solved that," Urban said.

Small-angle neutron scattering enabled the team to clearly observe the complicated biological systems at a nanoscale level without damaging the samples.

"With neutrons, you have an advantage that you get a very sharp contrast between these two phases, the chlorosome and the deuterated buffer. This gives you something like a clear black and white image," Urban said.

The team, led by Robert Blankenship of Washington University, published its findings in the journal Langmuir. The research was supported through the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by DOE's Office of Science. Both HFIR and the Bio-SANS facility at ORNL's Center for Structural Molecular Biology are also supported by DOE's Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kuo-Hsiang Tang, Liying Zhu, Volker S. Urban, Aaron M. Collins, Pratim Biswas, Robert E. Blankenship. Temperature and Ionic Strength Effects on the Chlorosome Light-Harvesting Antenna Complex. Langmuir, 2011; 110315121146005 DOI: 10.1021/la104532b

Cite This Page:

DOE/Oak Ridge National Laboratory. "Neutron analysis yields insight into bacteria for solar energy." ScienceDaily. ScienceDaily, 24 March 2011. <www.sciencedaily.com/releases/2011/03/110323140136.htm>.
DOE/Oak Ridge National Laboratory. (2011, March 24). Neutron analysis yields insight into bacteria for solar energy. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/03/110323140136.htm
DOE/Oak Ridge National Laboratory. "Neutron analysis yields insight into bacteria for solar energy." ScienceDaily. www.sciencedaily.com/releases/2011/03/110323140136.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins