Featured Research

from universities, journals, and other organizations

Closer look at cell membrane shows cholesterol 'keeping order'

Date:
April 18, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Scientists have developed a way to magnify cell membranes dramatically and watch them move, revealing a surprising dependence on cholesterol within this boundary between the cell and the outside world.

The purple "tails" of the lipid molecules that form the cell membrane are far less orderly in the absence of cholesterol (top image) than when cholesterol is present (bottom), a finding made possible by magnifying the membrane with neutron diffraction.
Credit: NIST

Cell membranes form the "skin" of most every cell in your body, but the ability to view them up close and in motion cannot be rendered by many experimental techniques. A team of scientists working at the National Institute of Standards and Technology (NIST) and University of California, Irvine, recently developed a way to magnify them dramatically. Their work has helped illuminate the important role of cholesterol within this boundary between the cell and the outside world.

The multi-institutional team used tools at the NIST Center for Neutron Research (NCNR) to examine the membrane at more than 1,000 times the resolution offered by an optical microscope -- the equivalent of magnifying the point of a needle to the size of a large building. This enabled an unprecedented look at the membrane, which -- because it controls access to our cells -- is a major target for many drugs.

"Drugs that affect pain sensation, heart rhythm, mood, appetite and memory all target proteins lodged in the cell membrane that function like little gates," says Ella Mihailescu of the Institute for Bioscience and Biotechnology Research, a joint institute of NIST and the University of Maryland. "Because membranes and their proteins are important to medicine, we would like a better picture of how the membrane functions -- and not just a better snapshot. We want to see it move, as it does constantly in real life."

Optical microscopes offer limited resolution, while the more powerful electron microscopes require freezing samples before they can be magnified. But by using neutron diffraction, which does not require frozen subjects, the team not only observed the membrane more closely and in motion, but they also gained insight into the long-known phenomenon of the membrane growing thicker and stiffer in the presence of cholesterol.

These lipid chains form a two-layer skin with the "heads" of the lipids facing outward toward the cell's exterior and interior and the "tails" intermingling on the inside of the cellular membrane. Cholesterol is known to be important for managing disorder in membranes. The team saw for the first time that when cholesterol is present, these tails line up in a tight formation, looking like a narrow stripe from which the lipid chains stretch outward -- and producing the order that had been previously anticipated, but never shown directly. But without cholesterol, the tails go a bit wild, flapping around energetically and in some cases even pushing up toward their chains' heads.

Mihailescu says the findings hint that cholesterol may have profound consequences for the membrane's gatekeeper proteins, which are very sensitive to their environment. "The membrane and its proteins interact constantly, so we're curious to learn more," she says. "With this unique magnification technique, we can explore the cell membrane more effectively than ever possible, and we are now establishing a research program with the University of Maryland to do so in greater detail."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Mihaela Mihailescu, Rishi G. Vaswani, Eduardo Jardón-Valadez, Francisco Castro-Román, J. Alfredo Freites, David L. Worcester, A. Richard Chamberlin, Douglas J. Tobias, Stephen H. White. Acyl-Chain Methyl Distributions of Liquid-Ordered and -Disordered Membranes. Biophysical Journal, 2011; 100 (6): 1455 DOI: 10.1016/j.bpj.2011.01.035

Cite This Page:

National Institute of Standards and Technology (NIST). "Closer look at cell membrane shows cholesterol 'keeping order'." ScienceDaily. ScienceDaily, 18 April 2011. <www.sciencedaily.com/releases/2011/03/110331151349.htm>.
National Institute of Standards and Technology (NIST). (2011, April 18). Closer look at cell membrane shows cholesterol 'keeping order'. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2011/03/110331151349.htm
National Institute of Standards and Technology (NIST). "Closer look at cell membrane shows cholesterol 'keeping order'." ScienceDaily. www.sciencedaily.com/releases/2011/03/110331151349.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) — An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins